Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| def dwt_init(x): | |
| x01 = x[:, :, 0::2, :] / 2 | |
| x02 = x[:, :, 1::2, :] / 2 | |
| x1 = x01[:, :, :, 0::2] | |
| x2 = x02[:, :, :, 0::2] | |
| x3 = x01[:, :, :, 1::2] | |
| x4 = x02[:, :, :, 1::2] | |
| x_LL = x1 + x2 + x3 + x4 | |
| x_HL = -x1 - x2 + x3 + x4 | |
| x_LH = -x1 + x2 - x3 + x4 | |
| x_HH = x1 - x2 - x3 + x4 | |
| # print(x_HH[:, 0, :, :]) | |
| return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) | |
| def iwt_init(x): | |
| r = 2 | |
| in_batch, in_channel, in_height, in_width = x.size() | |
| out_batch, out_channel, out_height, out_width = in_batch, int(in_channel / (r ** 2)), r * in_height, r * in_width | |
| x1 = x[:, 0:out_channel, :, :] / 2 | |
| x2 = x[:, out_channel:out_channel * 2, :, :] / 2 | |
| x3 = x[:, out_channel * 2:out_channel * 3, :, :] / 2 | |
| x4 = x[:, out_channel * 3:out_channel * 4, :, :] / 2 | |
| h = torch.zeros([out_batch, out_channel, out_height, out_width]).cuda() # | |
| h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4 | |
| h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4 | |
| h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4 | |
| h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4 | |
| return h | |
| class DWT(nn.Module): | |
| def __init__(self): | |
| super(DWT, self).__init__() | |
| self.requires_grad = True | |
| def forward(self, x): | |
| return dwt_init(x) | |
| class IWT(nn.Module): | |
| def __init__(self): | |
| super(IWT, self).__init__() | |
| self.requires_grad = True | |
| def forward(self, x): | |
| return iwt_init(x) | |