Spaces:
Running
on
T4
Running
on
T4
import os | |
import torch | |
from threading import Thread | |
from typing import List, Optional, Tuple, Dict | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import spaces | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler | |
import uuid | |
import json | |
# Constants | |
SYSTEM_PROMPT = """You are SmallThinker-3B, a helpful AI assistant. You try to follow instructions as much as possible while being accurate and brief.""" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
TITLE = "<h1><center>SmallThinker-3B Chat</center></h1>" | |
MODEL_PATH = "PowerInfer/SmallThinker-3B-Preview" | |
# Custom CSS with dark theme | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
.chat-container { | |
height: 500px !important; | |
overflow-y: auto !important; | |
flex-direction: column !important; | |
} | |
.messages-container { | |
flex-grow: 1 !important; | |
overflow-y: auto !important; | |
padding-right: 10px !important; | |
} | |
.contain { | |
height: 100% !important; | |
} | |
button { | |
border-radius: 8px !important; | |
} | |
""" | |
# Load model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=torch.bfloat16, | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) | |
logs_id = os.getenv("LOGS_ID") | |
logs_token = os.getenv("HF_LOGS_TOKEN") | |
logs_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
logs_folder = logs_file.parent | |
scheduler = CommitScheduler( | |
repo_id=logs_id, | |
repo_type="dataset", | |
folder_path=logs_folder, | |
path_in_repo="data", | |
every=5, | |
token=logs_token, | |
private=True, | |
) | |
def stream_chat( | |
message: str, | |
history: list, | |
temperature: float = 0.3, | |
max_new_tokens: int = 1024, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
repetition_penalty: float = 1.2, | |
): | |
# Create new history list with current message | |
new_history = history + [[message, ""]] | |
conversation = [] | |
# Only include previous messages in the conversation | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "system", "content": SYSTEM_PROMPT}, | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
streamer=streamer, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("\nUser", "") | |
buffer = buffer.replace("\nSystem", "") | |
new_history[-1][1] = buffer | |
yield new_history | |
with scheduler.lock: | |
with logs_file.open("a") as f: | |
f.write(json.dumps({"input": input_text.replace(SYSTEM_PROMPT, ""), "output": buffer.replace(SYSTEM_PROMPT, ""), "model": "SmallThinker-3B"})) | |
f.write("\n") | |
def clear_input(): | |
return "" | |
def add_message(message: str, history: list): | |
if message.strip() != "": | |
history = history + [[message, ""]] | |
return history | |
def clear_session() -> Tuple[str, List]: | |
return '', [] | |
def main(): | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
with gr.Row(): | |
with gr.Accordion(label="Chat Interface", open=True): | |
chatbot = gr.Chatbot( | |
label='SmallThinker-3B', | |
height=500, | |
container=True, | |
elem_classes=["chat-container"] | |
) | |
with gr.Accordion(label="⚙️ Parameters", open=False): | |
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature") | |
max_new_tokens = gr.Slider(minimum=128, maximum=32768, step=128, value=16384, label="Max new tokens") | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top-p") | |
top_k = gr.Slider(minimum=1, maximum=100, step=1, value=20, label="Top-k") | |
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty") | |
textbox = gr.Textbox(lines=1, label='Input') | |
with gr.Row(): | |
clear_history = gr.Button("🧹 Clear History") | |
submit = gr.Button("🚀 Send") | |
# Chain of events for submit button | |
submit_event = submit.click( | |
fn=add_message, | |
inputs=[textbox, chatbot], | |
outputs=chatbot, | |
queue=False | |
).then( | |
fn=clear_input, | |
outputs=textbox, | |
queue=False | |
).then( | |
fn=stream_chat, | |
inputs=[textbox, chatbot, temperature, max_new_tokens, top_p, top_k, repetition_penalty], | |
outputs=chatbot, | |
show_progress=True | |
) | |
# Chain of events for enter key | |
enter_event = textbox.submit( | |
fn=add_message, | |
inputs=[textbox, chatbot], | |
outputs=chatbot, | |
queue=False | |
).then( | |
fn=clear_input, | |
outputs=textbox, | |
queue=False | |
).then( | |
fn=stream_chat, | |
inputs=[textbox, chatbot, temperature, max_new_tokens, top_p, top_k, repetition_penalty], | |
outputs=chatbot, | |
show_progress=True | |
) | |
clear_history.click(fn=clear_session, | |
outputs=[textbox, chatbot]) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |