Spaces:
Build error
Build error
Added all files except large model files
Browse files- anekdoty.txt +0 -0
- cached_lm_GPT2Tokenizer_32_train_dataset.txt +0 -0
- cached_lm_GPT2Tokenizer_32_train_dataset.txt.lock +0 -0
- finetuned/config.json +41 -0
- finetuned/generation_config.json +7 -0
- finetuned/merges.txt +0 -0
- finetuned/model.safetensors +3 -0
- finetuned/runs/Aug08_16-55-33_polyakovk/events.out.tfevents.1723125335.polyakovk.25105.0 +3 -0
- finetuned/special_tokens_map.json +37 -0
- finetuned/tokenizer_config.json +58 -0
- finetuned/vocab.json +0 -0
- gpt.ipynb +333 -0
- gpt_jokes.py +61 -0
- requirements.txt +3 -0
- train_dataset.txt +0 -0
anekdoty.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cached_lm_GPT2Tokenizer_32_train_dataset.txt
ADDED
|
Binary file (825 kB). View file
|
|
|
cached_lm_GPT2Tokenizer_32_train_dataset.txt.lock
ADDED
|
File without changes
|
finetuned/config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sberbank-ai/rugpt3small_based_on_gpt2",
|
| 3 |
+
"activation_function": "gelu_new",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"GPT2LMHeadModel"
|
| 6 |
+
],
|
| 7 |
+
"attn_pdrop": 0.1,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"embd_pdrop": 0.1,
|
| 10 |
+
"eos_token_id": 2,
|
| 11 |
+
"gradient_checkpointing": false,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "LABEL_0"
|
| 14 |
+
},
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_epsilon": 1e-05,
|
| 20 |
+
"model_type": "gpt2",
|
| 21 |
+
"n_ctx": 2048,
|
| 22 |
+
"n_embd": 768,
|
| 23 |
+
"n_head": 12,
|
| 24 |
+
"n_inner": null,
|
| 25 |
+
"n_layer": 12,
|
| 26 |
+
"n_positions": 2048,
|
| 27 |
+
"pad_token_id": 0,
|
| 28 |
+
"reorder_and_upcast_attn": false,
|
| 29 |
+
"resid_pdrop": 0.1,
|
| 30 |
+
"scale_attn_by_inverse_layer_idx": false,
|
| 31 |
+
"scale_attn_weights": true,
|
| 32 |
+
"summary_activation": null,
|
| 33 |
+
"summary_first_dropout": 0.1,
|
| 34 |
+
"summary_proj_to_labels": true,
|
| 35 |
+
"summary_type": "cls_index",
|
| 36 |
+
"summary_use_proj": true,
|
| 37 |
+
"torch_dtype": "float32",
|
| 38 |
+
"transformers_version": "4.44.0",
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"vocab_size": 50264
|
| 41 |
+
}
|
finetuned/generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.44.0"
|
| 7 |
+
}
|
finetuned/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetuned/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:835959117be04e902bc01acc4bf9d85c8ceffd3bc8db4eed27312235c7355c22
|
| 3 |
+
size 500941440
|
finetuned/runs/Aug08_16-55-33_polyakovk/events.out.tfevents.1723125335.polyakovk.25105.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cecffac6e122a4a480909d8de92471a3242633d8908bda02951d4fa74477b0f1
|
| 3 |
+
size 5520
|
finetuned/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"mask_token": {
|
| 17 |
+
"content": "<mask>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"pad_token": {
|
| 24 |
+
"content": "<pad>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": true,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "<unk>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
finetuned/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<pad>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": true,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": true,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": true,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<unk>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": true,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<mask>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
}
|
| 45 |
+
},
|
| 46 |
+
"bos_token": "<s>",
|
| 47 |
+
"clean_up_tokenization_spaces": true,
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"model_max_length": 2048,
|
| 52 |
+
"pad_token": "<pad>",
|
| 53 |
+
"padding_side": "left",
|
| 54 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 55 |
+
"truncation_side": "left",
|
| 56 |
+
"trust_remote_code": false,
|
| 57 |
+
"unk_token": "<unk>"
|
| 58 |
+
}
|
finetuned/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
gpt.ipynb
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from transformers import GPT2LMHeadModel, GPT2Tokenizer\n",
|
| 10 |
+
"import torch\n",
|
| 11 |
+
"DEVICE = torch.device(\"cuda:0\")\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"model_name_or_path = \"sberbank-ai/rugpt3small_based_on_gpt2\"\n",
|
| 14 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)\n",
|
| 15 |
+
"model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE)"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "code",
|
| 20 |
+
"execution_count": 3,
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"outputs": [],
|
| 23 |
+
"source": [
|
| 24 |
+
"with open('anekdoty.txt', 'r', encoding='utf-8') as file:\n",
|
| 25 |
+
" text = file.read()"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": 4,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [
|
| 33 |
+
{
|
| 34 |
+
"name": "stderr",
|
| 35 |
+
"output_type": "stream",
|
| 36 |
+
"text": [
|
| 37 |
+
"/home/polyakovk/venv_linux/lib/python3.11/site-packages/transformers/data/datasets/language_modeling.py:53: FutureWarning: This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets library. You can have a look at this example script for pointers: https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py\n",
|
| 38 |
+
" warnings.warn(\n"
|
| 39 |
+
]
|
| 40 |
+
}
|
| 41 |
+
],
|
| 42 |
+
"source": [
|
| 43 |
+
"from transformers import TextDataset, DataCollatorForLanguageModeling\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"# Сохраним обучающие данные в .txt файл \n",
|
| 46 |
+
"train_path = 'train_dataset.txt'\n",
|
| 47 |
+
"with open(train_path, \"w\") as f:\n",
|
| 48 |
+
" f.write(text)\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"# Создание датасета\n",
|
| 51 |
+
"train_dataset = TextDataset(tokenizer=tokenizer,file_path=train_path,block_size=32)\n",
|
| 52 |
+
" \n",
|
| 53 |
+
"# Создание даталодера (нарезает текст на оптимальные по длине куски)\n",
|
| 54 |
+
"data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "code",
|
| 59 |
+
"execution_count": 5,
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"from transformers import Trainer, TrainingArguments\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"training_args = TrainingArguments(\n",
|
| 66 |
+
" output_dir=\"./finetuned\",\n",
|
| 67 |
+
" overwrite_output_dir=True,\n",
|
| 68 |
+
" num_train_epochs=30,\n",
|
| 69 |
+
" per_device_train_batch_size=32,\n",
|
| 70 |
+
" per_device_eval_batch_size=16,\n",
|
| 71 |
+
" warmup_steps=10,\n",
|
| 72 |
+
" gradient_accumulation_steps=32,\n",
|
| 73 |
+
" )\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"trainer = Trainer(\n",
|
| 76 |
+
" model=model,\n",
|
| 77 |
+
" args=training_args,\n",
|
| 78 |
+
" data_collator=data_collator,\n",
|
| 79 |
+
" train_dataset=train_dataset,\n",
|
| 80 |
+
" optimizers = (torch.optim.AdamW(model.parameters(),lr=0.001),None)\n",
|
| 81 |
+
")"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": 5,
|
| 87 |
+
"metadata": {},
|
| 88 |
+
"outputs": [
|
| 89 |
+
{
|
| 90 |
+
"data": {
|
| 91 |
+
"text/html": [
|
| 92 |
+
"\n",
|
| 93 |
+
" <div>\n",
|
| 94 |
+
" \n",
|
| 95 |
+
" <progress value='240' max='240' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 96 |
+
" [240/240 1:14:57, Epoch 27/30]\n",
|
| 97 |
+
" </div>\n",
|
| 98 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 99 |
+
" <thead>\n",
|
| 100 |
+
" <tr style=\"text-align: left;\">\n",
|
| 101 |
+
" <th>Step</th>\n",
|
| 102 |
+
" <th>Training Loss</th>\n",
|
| 103 |
+
" </tr>\n",
|
| 104 |
+
" </thead>\n",
|
| 105 |
+
" <tbody>\n",
|
| 106 |
+
" </tbody>\n",
|
| 107 |
+
"</table><p>"
|
| 108 |
+
],
|
| 109 |
+
"text/plain": [
|
| 110 |
+
"<IPython.core.display.HTML object>"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
"metadata": {},
|
| 114 |
+
"output_type": "display_data"
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"data": {
|
| 118 |
+
"text/plain": [
|
| 119 |
+
"TrainOutput(global_step=240, training_loss=0.9343911488850911, metrics={'train_runtime': 4515.8084, 'train_samples_per_second': 58.428, 'train_steps_per_second': 0.053, 'total_flos': 4011240960000000.0, 'train_loss': 0.9343911488850911, 'epoch': 27.927272727272726})"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
"execution_count": 5,
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"output_type": "execute_result"
|
| 125 |
+
}
|
| 126 |
+
],
|
| 127 |
+
"source": [
|
| 128 |
+
"trainer.train()"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": 9,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"model_path = \"finetuned\"\n",
|
| 138 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(model_path)\n",
|
| 139 |
+
"model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": 70,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"def generate_jokes(prompt, temperature, top_p, max_length, num_return_sequences):\n",
|
| 149 |
+
" input_ids = tokenizer.encode(prompt, return_tensors='pt').to(DEVICE)\n",
|
| 150 |
+
" \n",
|
| 151 |
+
" # Генерируем несколько шуток\n",
|
| 152 |
+
" outputs = model.generate(\n",
|
| 153 |
+
" input_ids=input_ids,\n",
|
| 154 |
+
" do_sample=True,\n",
|
| 155 |
+
" # num_beams=5,\n",
|
| 156 |
+
" temperature=temperature,\n",
|
| 157 |
+
" top_p=top_p,\n",
|
| 158 |
+
" max_length=max_length,\n",
|
| 159 |
+
" num_return_sequences=num_return_sequences\n",
|
| 160 |
+
" )\n",
|
| 161 |
+
" \n",
|
| 162 |
+
" # Обработка всех сгенерированных шуток\n",
|
| 163 |
+
" jokes = []\n",
|
| 164 |
+
" for output in outputs:\n",
|
| 165 |
+
" generated_text = tokenizer.decode(output, skip_special_tokens=True)\n",
|
| 166 |
+
" # Обрезаем текст после первой точки\n",
|
| 167 |
+
" if '…' in generated_text:\n",
|
| 168 |
+
" generated_text = generated_text.split('…')[0] + '.'\n",
|
| 169 |
+
" elif '.' in generated_text:\n",
|
| 170 |
+
" generated_text = generated_text.split('.')[0] + '.'\n",
|
| 171 |
+
" elif '!' in generated_text:\n",
|
| 172 |
+
" generated_text = generated_text.split('!')[0] + '.'\n",
|
| 173 |
+
" jokes.append(generated_text)\n",
|
| 174 |
+
" \n",
|
| 175 |
+
" return jokes"
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"cell_type": "code",
|
| 180 |
+
"execution_count": 73,
|
| 181 |
+
"metadata": {},
|
| 182 |
+
"outputs": [
|
| 183 |
+
{
|
| 184 |
+
"name": "stdout",
|
| 185 |
+
"output_type": "stream",
|
| 186 |
+
"text": [
|
| 187 |
+
"['Шла Саша по шоссе, громко разговаривая с шофером.', 'Шла Саша по шоссе, громко матерясь и упирая руку в ширинку.', 'Шла Саша по шоссе, несла пургу и, как раз, дождь.', 'Шла Саша по шоссе, но не за трактором.']\n"
|
| 188 |
+
]
|
| 189 |
+
}
|
| 190 |
+
],
|
| 191 |
+
"source": [
|
| 192 |
+
"text = \"Шла Саша по шоссе\"\n",
|
| 193 |
+
"print(generate_jokes(text, 1, 0.9, 30, 4))"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": 10,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [
|
| 201 |
+
{
|
| 202 |
+
"name": "stdout",
|
| 203 |
+
"output_type": "stream",
|
| 204 |
+
"text": [
|
| 205 |
+
"\n",
|
| 206 |
+
"однажды я проваливал экзамен по истории.\n",
|
| 207 |
+
"— Вино с возрастом становится лучше. Я становлюсь лучше с вином…\n",
|
| 208 |
+
"— Сними\n"
|
| 209 |
+
]
|
| 210 |
+
}
|
| 211 |
+
],
|
| 212 |
+
"source": [
|
| 213 |
+
"text = \"однажды я пришел из школы\"\n",
|
| 214 |
+
"input_ids = tokenizer.encode(text, return_tensors=\"pt\").to(DEVICE)\n",
|
| 215 |
+
"model.eval()\n",
|
| 216 |
+
"with torch.no_grad():\n",
|
| 217 |
+
" out = model.generate(input_ids, \n",
|
| 218 |
+
" do_sample=True,\n",
|
| 219 |
+
" num_beams=2,\n",
|
| 220 |
+
" temperature=1.5,\n",
|
| 221 |
+
" top_p=0.9,\n",
|
| 222 |
+
" max_length=30,\n",
|
| 223 |
+
" \n",
|
| 224 |
+
" )\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"generated_text = list(map(tokenizer.decode, out))[0]\n",
|
| 227 |
+
"print()\n",
|
| 228 |
+
"print(generated_text)"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": 8,
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [],
|
| 236 |
+
"source": [
|
| 237 |
+
"# model.save_pretrained('./finetuned')\n",
|
| 238 |
+
"# tokenizer.save_pretrained('./finetuned')"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "code",
|
| 243 |
+
"execution_count": 38,
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"outputs": [],
|
| 246 |
+
"source": [
|
| 247 |
+
"# import requests\n",
|
| 248 |
+
"# from bs4 import BeautifulSoup\n",
|
| 249 |
+
"# import re\n",
|
| 250 |
+
"\n",
|
| 251 |
+
"# # Функция для получения шуток с одной страницы\n",
|
| 252 |
+
"# def get_jokes_from_page(url):\n",
|
| 253 |
+
"# response = requests.get(url, headers=headers)\n",
|
| 254 |
+
"# response.raise_for_status() # Проверка на ошибки запроса\n",
|
| 255 |
+
"\n",
|
| 256 |
+
"# soup = BeautifulSoup(response.text, 'html.parser')\n",
|
| 257 |
+
"\n",
|
| 258 |
+
"# # Находим все анекдоты на странице\n",
|
| 259 |
+
"# jokes = soup.find_all('div', class_='anekdot-text') # Замените селектор на правильный\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"# page_jokes = []\n",
|
| 262 |
+
"# for joke in jokes:\n",
|
| 263 |
+
"# # Извлекаем текст анекдота\n",
|
| 264 |
+
"# joke_text = joke.get_text(strip=True)\n",
|
| 265 |
+
" \n",
|
| 266 |
+
"# # Удаляем цифры и символы в конце текста\n",
|
| 267 |
+
"# joke_text_cleaned = re.sub(r'\\d+[\\#\\d]*$', '', joke_text).strip()\n",
|
| 268 |
+
" \n",
|
| 269 |
+
"# # Добавляем очищенный текст в список\n",
|
| 270 |
+
"# page_jokes.append(joke_text_cleaned)\n",
|
| 271 |
+
" \n",
|
| 272 |
+
"# return page_jokes\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"# # URL-шаблон для страниц\n",
|
| 275 |
+
"# base_url = \"https://anekdotovstreet.com/korotkie-anekdoty/{}/\"\n",
|
| 276 |
+
"\n",
|
| 277 |
+
"# # Заголовки для имитации браузера\n",
|
| 278 |
+
"# headers = {\n",
|
| 279 |
+
"# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'\n",
|
| 280 |
+
"# }\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"# # Открываем файл для записи анекдотов\n",
|
| 283 |
+
"# with open('anekdoty.txt', 'w', encoding='utf-8') as file:\n",
|
| 284 |
+
"# for page_number in range(2, 400):\n",
|
| 285 |
+
"# # Формируем URL для текущей страницы\n",
|
| 286 |
+
"# url = base_url.format(page_number)\n",
|
| 287 |
+
"# print(f\"Собираю шутки со страницы {page_number}...\")\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"# # Получаем шутки с текущей страницы\n",
|
| 290 |
+
"# jokes = get_jokes_from_page(url)\n",
|
| 291 |
+
" \n",
|
| 292 |
+
"# # Если шуток нет, значит, страницы закончились (опционально)\n",
|
| 293 |
+
"# if not jokes:\n",
|
| 294 |
+
"# print(f\"Шутки на странице {page_number} не найдены.\")\n",
|
| 295 |
+
"# continue\n",
|
| 296 |
+
" \n",
|
| 297 |
+
"# # Записываем шутки в файл\n",
|
| 298 |
+
"# for joke in jokes:\n",
|
| 299 |
+
"# file.write(joke + '\\n')\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"# print(\"Анекдоты успешно сохранены в файл 'anekdoty.txt'.\")"
|
| 302 |
+
]
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"cell_type": "code",
|
| 306 |
+
"execution_count": null,
|
| 307 |
+
"metadata": {},
|
| 308 |
+
"outputs": [],
|
| 309 |
+
"source": []
|
| 310 |
+
}
|
| 311 |
+
],
|
| 312 |
+
"metadata": {
|
| 313 |
+
"kernelspec": {
|
| 314 |
+
"display_name": "venv_linux",
|
| 315 |
+
"language": "python",
|
| 316 |
+
"name": "python3"
|
| 317 |
+
},
|
| 318 |
+
"language_info": {
|
| 319 |
+
"codemirror_mode": {
|
| 320 |
+
"name": "ipython",
|
| 321 |
+
"version": 3
|
| 322 |
+
},
|
| 323 |
+
"file_extension": ".py",
|
| 324 |
+
"mimetype": "text/x-python",
|
| 325 |
+
"name": "python",
|
| 326 |
+
"nbconvert_exporter": "python",
|
| 327 |
+
"pygments_lexer": "ipython3",
|
| 328 |
+
"version": "3.11.9"
|
| 329 |
+
}
|
| 330 |
+
},
|
| 331 |
+
"nbformat": 4,
|
| 332 |
+
"nbformat_minor": 2
|
| 333 |
+
}
|
gpt_jokes.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Загрузка обученной модели и токенизатора
|
| 10 |
+
model_path = "finetuned"
|
| 11 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
| 12 |
+
model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)
|
| 13 |
+
|
| 14 |
+
def generate_jokes(prompt, temperature, top_p, max_length, num_return_sequences):
|
| 15 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(DEVICE)
|
| 16 |
+
|
| 17 |
+
# Генерируем несколько шуток
|
| 18 |
+
outputs = model.generate(
|
| 19 |
+
input_ids=input_ids,
|
| 20 |
+
do_sample=True,
|
| 21 |
+
# num_beams=5,
|
| 22 |
+
temperature=temperature,
|
| 23 |
+
top_p=top_p,
|
| 24 |
+
max_length=max_length,
|
| 25 |
+
num_return_sequences=num_return_sequences
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Обработка всех сгенерированных шуток
|
| 29 |
+
jokes = []
|
| 30 |
+
for output in outputs:
|
| 31 |
+
generated_text = tokenizer.decode(output, skip_special_tokens=True)
|
| 32 |
+
# Обрезаем текст после первой точки
|
| 33 |
+
if '…' in generated_text:
|
| 34 |
+
generated_text = generated_text.split('…')[0] + '.'
|
| 35 |
+
elif '.' in generated_text:
|
| 36 |
+
generated_text = generated_text.split('.')[0] + '.'
|
| 37 |
+
elif '!' in generated_text:
|
| 38 |
+
generated_text = generated_text.split('!')[0] + '.'
|
| 39 |
+
jokes.append(generated_text)
|
| 40 |
+
|
| 41 |
+
return jokes
|
| 42 |
+
|
| 43 |
+
# Создание интерфейса Streamlit
|
| 44 |
+
st.title('GPT-2, как генератор сомнительных шуток')
|
| 45 |
+
|
| 46 |
+
# Ввод промта
|
| 47 |
+
prompt = st.text_input('Введите свой промт:', 'Народная мудрость гласит')
|
| 48 |
+
|
| 49 |
+
# Регулировка параметров генерации
|
| 50 |
+
max_length = st.slider('Максимальная длина последовательности:', min_value=10, max_value=100, value=35)
|
| 51 |
+
num_return_sequences = st.slider('Число генераций текста:', min_value=1, max_value=5, value=3)
|
| 52 |
+
temperature = st.slider('Температура (дисперсия):', min_value=0.1, max_value=2.0, value=1.0, step=0.1)
|
| 53 |
+
top_p = st.slider('Top-p (ядро):', min_value=0.1, max_value=1.0, value=0.9, step=0.1)
|
| 54 |
+
|
| 55 |
+
# Генерация текста
|
| 56 |
+
if st.button('Сгенерировать'):
|
| 57 |
+
with st.spinner('Генерация текста...'):
|
| 58 |
+
generated_texts = generate_jokes(prompt,temperature, top_p, max_length, num_return_sequences)
|
| 59 |
+
for i, text in enumerate(generated_texts):
|
| 60 |
+
st.subheader(f'Генерация {i + 1}:')
|
| 61 |
+
st.write(text)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.37.0
|
| 2 |
+
torch==2.4.0
|
| 3 |
+
transformers==4.44.0
|
train_dataset.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|