Spaces:
Running
on
Zero
Running
on
Zero
Update modules/hifigan/generator.py
Browse files- modules/hifigan/generator.py +454 -453
modules/hifigan/generator.py
CHANGED
|
@@ -1,453 +1,454 @@
|
|
| 1 |
-
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
"""HIFI-GAN"""
|
| 16 |
-
|
| 17 |
-
import typing as tp
|
| 18 |
-
import numpy as np
|
| 19 |
-
from scipy.signal import get_window
|
| 20 |
-
import torch
|
| 21 |
-
import torch.nn as nn
|
| 22 |
-
import torch.nn.functional as F
|
| 23 |
-
from torch.nn import Conv1d
|
| 24 |
-
from torch.nn import ConvTranspose1d
|
| 25 |
-
from torch.nn.utils import remove_weight_norm
|
| 26 |
-
from torch.nn.utils import weight_norm
|
| 27 |
-
from torch.distributions.uniform import Uniform
|
| 28 |
-
|
| 29 |
-
from torch import sin
|
| 30 |
-
from torch.nn.parameter import Parameter
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
"""hifigan based generator implementation.
|
| 34 |
-
|
| 35 |
-
This code is modified from https://github.com/jik876/hifi-gan
|
| 36 |
-
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
| 37 |
-
https://github.com/NVIDIA/BigVGAN
|
| 38 |
-
|
| 39 |
-
"""
|
| 40 |
-
class Snake(nn.Module):
|
| 41 |
-
'''
|
| 42 |
-
Implementation of a sine-based periodic activation function
|
| 43 |
-
Shape:
|
| 44 |
-
- Input: (B, C, T)
|
| 45 |
-
- Output: (B, C, T), same shape as the input
|
| 46 |
-
Parameters:
|
| 47 |
-
- alpha - trainable parameter
|
| 48 |
-
References:
|
| 49 |
-
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
| 50 |
-
https://arxiv.org/abs/2006.08195
|
| 51 |
-
Examples:
|
| 52 |
-
>>> a1 = snake(256)
|
| 53 |
-
>>> x = torch.randn(256)
|
| 54 |
-
>>> x = a1(x)
|
| 55 |
-
'''
|
| 56 |
-
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
| 57 |
-
'''
|
| 58 |
-
Initialization.
|
| 59 |
-
INPUT:
|
| 60 |
-
- in_features: shape of the input
|
| 61 |
-
- alpha: trainable parameter
|
| 62 |
-
alpha is initialized to 1 by default, higher values = higher-frequency.
|
| 63 |
-
alpha will be trained along with the rest of your model.
|
| 64 |
-
'''
|
| 65 |
-
super(Snake, self).__init__()
|
| 66 |
-
self.in_features = in_features
|
| 67 |
-
|
| 68 |
-
# initialize alpha
|
| 69 |
-
self.alpha_logscale = alpha_logscale
|
| 70 |
-
if self.alpha_logscale: # log scale alphas initialized to zeros
|
| 71 |
-
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
| 72 |
-
else: # linear scale alphas initialized to ones
|
| 73 |
-
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
| 74 |
-
|
| 75 |
-
self.alpha.requires_grad = alpha_trainable
|
| 76 |
-
|
| 77 |
-
self.no_div_by_zero = 0.000000001
|
| 78 |
-
|
| 79 |
-
def forward(self, x):
|
| 80 |
-
'''
|
| 81 |
-
Forward pass of the function.
|
| 82 |
-
Applies the function to the input elementwise.
|
| 83 |
-
Snake ∶= x + 1/a * sin^2 (xa)
|
| 84 |
-
'''
|
| 85 |
-
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
| 86 |
-
if self.alpha_logscale:
|
| 87 |
-
alpha = torch.exp(alpha)
|
| 88 |
-
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
| 89 |
-
|
| 90 |
-
return x
|
| 91 |
-
|
| 92 |
-
def get_padding(kernel_size, dilation=1):
|
| 93 |
-
return int((kernel_size * dilation - dilation) / 2)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def init_weights(m, mean=0.0, std=0.01):
|
| 97 |
-
classname = m.__class__.__name__
|
| 98 |
-
if classname.find("Conv") != -1:
|
| 99 |
-
m.weight.data.normal_(mean, std)
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
class ResBlock(torch.nn.Module):
|
| 104 |
-
"""Residual block module in HiFiGAN/BigVGAN."""
|
| 105 |
-
def __init__(
|
| 106 |
-
self,
|
| 107 |
-
channels: int = 512,
|
| 108 |
-
kernel_size: int = 3,
|
| 109 |
-
dilations: tp.List[int] = [1, 3, 5],
|
| 110 |
-
):
|
| 111 |
-
super(ResBlock, self).__init__()
|
| 112 |
-
self.convs1 = nn.ModuleList()
|
| 113 |
-
self.convs2 = nn.ModuleList()
|
| 114 |
-
|
| 115 |
-
for dilation in dilations:
|
| 116 |
-
self.convs1.append(
|
| 117 |
-
weight_norm(
|
| 118 |
-
Conv1d(
|
| 119 |
-
channels,
|
| 120 |
-
channels,
|
| 121 |
-
kernel_size,
|
| 122 |
-
1,
|
| 123 |
-
dilation=dilation,
|
| 124 |
-
padding=get_padding(kernel_size, dilation)
|
| 125 |
-
)
|
| 126 |
-
)
|
| 127 |
-
)
|
| 128 |
-
self.convs2.append(
|
| 129 |
-
weight_norm(
|
| 130 |
-
Conv1d(
|
| 131 |
-
channels,
|
| 132 |
-
channels,
|
| 133 |
-
kernel_size,
|
| 134 |
-
1,
|
| 135 |
-
dilation=1,
|
| 136 |
-
padding=get_padding(kernel_size, 1)
|
| 137 |
-
)
|
| 138 |
-
)
|
| 139 |
-
)
|
| 140 |
-
self.convs1.apply(init_weights)
|
| 141 |
-
self.convs2.apply(init_weights)
|
| 142 |
-
self.activations1 = nn.ModuleList([
|
| 143 |
-
Snake(channels, alpha_logscale=False)
|
| 144 |
-
for _ in range(len(self.convs1))
|
| 145 |
-
])
|
| 146 |
-
self.activations2 = nn.ModuleList([
|
| 147 |
-
Snake(channels, alpha_logscale=False)
|
| 148 |
-
for _ in range(len(self.convs2))
|
| 149 |
-
])
|
| 150 |
-
|
| 151 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 152 |
-
for idx in range(len(self.convs1)):
|
| 153 |
-
xt = self.activations1[idx](x)
|
| 154 |
-
xt = self.convs1[idx](xt)
|
| 155 |
-
xt = self.activations2[idx](xt)
|
| 156 |
-
xt = self.convs2[idx](xt)
|
| 157 |
-
x = xt + x
|
| 158 |
-
return x
|
| 159 |
-
|
| 160 |
-
def remove_weight_norm(self):
|
| 161 |
-
for idx in range(len(self.convs1)):
|
| 162 |
-
remove_weight_norm(self.convs1[idx])
|
| 163 |
-
remove_weight_norm(self.convs2[idx])
|
| 164 |
-
|
| 165 |
-
class SineGen(torch.nn.Module):
|
| 166 |
-
""" Definition of sine generator
|
| 167 |
-
SineGen(samp_rate, harmonic_num = 0,
|
| 168 |
-
sine_amp = 0.1, noise_std = 0.003,
|
| 169 |
-
voiced_threshold = 0,
|
| 170 |
-
flag_for_pulse=False)
|
| 171 |
-
samp_rate: sampling rate in Hz
|
| 172 |
-
harmonic_num: number of harmonic overtones (default 0)
|
| 173 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 174 |
-
noise_std: std of Gaussian noise (default 0.003)
|
| 175 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 176 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 177 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 178 |
-
segment is always sin(np.pi) or cos(0)
|
| 179 |
-
"""
|
| 180 |
-
|
| 181 |
-
def __init__(self, samp_rate, harmonic_num=0,
|
| 182 |
-
sine_amp=0.1, noise_std=0.003,
|
| 183 |
-
voiced_threshold=0):
|
| 184 |
-
super(SineGen, self).__init__()
|
| 185 |
-
self.sine_amp = sine_amp
|
| 186 |
-
self.noise_std = noise_std
|
| 187 |
-
self.harmonic_num = harmonic_num
|
| 188 |
-
self.sampling_rate = samp_rate
|
| 189 |
-
self.voiced_threshold = voiced_threshold
|
| 190 |
-
|
| 191 |
-
def _f02uv(self, f0):
|
| 192 |
-
# generate uv signal
|
| 193 |
-
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 194 |
-
return uv
|
| 195 |
-
|
| 196 |
-
@torch.no_grad()
|
| 197 |
-
def forward(self, f0):
|
| 198 |
-
"""
|
| 199 |
-
:param f0: [B, 1, sample_len], Hz
|
| 200 |
-
:return: [B, 1, sample_len]
|
| 201 |
-
"""
|
| 202 |
-
|
| 203 |
-
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
| 204 |
-
for i in range(self.harmonic_num + 1):
|
| 205 |
-
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
| 206 |
-
|
| 207 |
-
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
| 208 |
-
u_dist = Uniform(low=-np.pi, high=np.pi)
|
| 209 |
-
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
| 210 |
-
phase_vec[:, 0, :] = 0
|
| 211 |
-
|
| 212 |
-
# generate sine waveforms
|
| 213 |
-
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
| 214 |
-
|
| 215 |
-
# generate uv signal
|
| 216 |
-
uv = self._f02uv(f0)
|
| 217 |
-
|
| 218 |
-
# noise: for unvoiced should be similar to sine_amp
|
| 219 |
-
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 220 |
-
# . for voiced regions is self.noise_std
|
| 221 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 222 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
| 223 |
-
|
| 224 |
-
# first: set the unvoiced part to 0 by uv
|
| 225 |
-
# then: additive noise
|
| 226 |
-
sine_waves = sine_waves * uv + noise
|
| 227 |
-
return sine_waves, uv, noise
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
| 231 |
-
""" SourceModule for hn-nsf
|
| 232 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 233 |
-
add_noise_std=0.003, voiced_threshod=0)
|
| 234 |
-
sampling_rate: sampling_rate in Hz
|
| 235 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
| 236 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 237 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 238 |
-
note that amplitude of noise in unvoiced is decided
|
| 239 |
-
by sine_amp
|
| 240 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 241 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 242 |
-
F0_sampled (batchsize, length, 1)
|
| 243 |
-
Sine_source (batchsize, length, 1)
|
| 244 |
-
noise_source (batchsize, length 1)
|
| 245 |
-
uv (batchsize, length, 1)
|
| 246 |
-
"""
|
| 247 |
-
|
| 248 |
-
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 249 |
-
add_noise_std=0.003, voiced_threshod=0):
|
| 250 |
-
super(SourceModuleHnNSF, self).__init__()
|
| 251 |
-
|
| 252 |
-
self.sine_amp = sine_amp
|
| 253 |
-
self.noise_std = add_noise_std
|
| 254 |
-
|
| 255 |
-
# to produce sine waveforms
|
| 256 |
-
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
| 257 |
-
sine_amp, add_noise_std, voiced_threshod)
|
| 258 |
-
|
| 259 |
-
# to merge source harmonics into a single excitation
|
| 260 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 261 |
-
self.l_tanh = torch.nn.Tanh()
|
| 262 |
-
|
| 263 |
-
def forward(self, x):
|
| 264 |
-
"""
|
| 265 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 266 |
-
F0_sampled (batchsize, length, 1)
|
| 267 |
-
Sine_source (batchsize, length, 1)
|
| 268 |
-
noise_source (batchsize, length 1)
|
| 269 |
-
"""
|
| 270 |
-
# source for harmonic branch
|
| 271 |
-
with torch.no_grad():
|
| 272 |
-
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
| 273 |
-
sine_wavs = sine_wavs.transpose(1, 2)
|
| 274 |
-
uv = uv.transpose(1, 2)
|
| 275 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 276 |
-
|
| 277 |
-
# source for noise branch, in the same shape as uv
|
| 278 |
-
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 279 |
-
return sine_merge, noise, uv
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
class HiFTGenerator(nn.Module):
|
| 283 |
-
"""
|
| 284 |
-
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
| 285 |
-
https://arxiv.org/abs/2309.09493
|
| 286 |
-
"""
|
| 287 |
-
def __init__(
|
| 288 |
-
self,
|
| 289 |
-
in_channels: int = 80,
|
| 290 |
-
base_channels: int = 512,
|
| 291 |
-
nb_harmonics: int = 8,
|
| 292 |
-
sampling_rate: int = 22050,
|
| 293 |
-
nsf_alpha: float = 0.1,
|
| 294 |
-
nsf_sigma: float = 0.003,
|
| 295 |
-
nsf_voiced_threshold: float = 10,
|
| 296 |
-
upsample_rates: tp.List[int] = [8, 8],
|
| 297 |
-
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
| 298 |
-
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
| 299 |
-
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
| 300 |
-
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 301 |
-
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
| 302 |
-
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
| 303 |
-
lrelu_slope: float = 0.1,
|
| 304 |
-
audio_limit: float = 0.99,
|
| 305 |
-
f0_predictor: torch.nn.Module = None,
|
| 306 |
-
):
|
| 307 |
-
super(HiFTGenerator, self).__init__()
|
| 308 |
-
|
| 309 |
-
self.out_channels = 1
|
| 310 |
-
self.nb_harmonics = nb_harmonics
|
| 311 |
-
self.sampling_rate = sampling_rate
|
| 312 |
-
self.istft_params = istft_params
|
| 313 |
-
self.lrelu_slope = lrelu_slope
|
| 314 |
-
self.audio_limit = audio_limit
|
| 315 |
-
|
| 316 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
| 317 |
-
self.num_upsamples = len(upsample_rates)
|
| 318 |
-
self.m_source = SourceModuleHnNSF(
|
| 319 |
-
sampling_rate=sampling_rate,
|
| 320 |
-
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
| 321 |
-
harmonic_num=nb_harmonics,
|
| 322 |
-
sine_amp=nsf_alpha,
|
| 323 |
-
add_noise_std=nsf_sigma,
|
| 324 |
-
voiced_threshod=nsf_voiced_threshold)
|
| 325 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
| 326 |
-
|
| 327 |
-
self.conv_pre = weight_norm(
|
| 328 |
-
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
# Up
|
| 332 |
-
self.ups = nn.ModuleList()
|
| 333 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 334 |
-
self.ups.append(
|
| 335 |
-
weight_norm(
|
| 336 |
-
ConvTranspose1d(
|
| 337 |
-
base_channels // (2**i),
|
| 338 |
-
base_channels // (2**(i + 1)),
|
| 339 |
-
k,
|
| 340 |
-
u,
|
| 341 |
-
padding=(k - u) // 2,
|
| 342 |
-
)
|
| 343 |
-
)
|
| 344 |
-
)
|
| 345 |
-
|
| 346 |
-
# Down
|
| 347 |
-
self.source_downs = nn.ModuleList()
|
| 348 |
-
self.source_resblocks = nn.ModuleList()
|
| 349 |
-
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
| 350 |
-
downsample_cum_rates = np.cumprod(downsample_rates)
|
| 351 |
-
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
| 352 |
-
source_resblock_dilation_sizes)):
|
| 353 |
-
if u == 1:
|
| 354 |
-
self.source_downs.append(
|
| 355 |
-
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
| 356 |
-
)
|
| 357 |
-
else:
|
| 358 |
-
self.source_downs.append(
|
| 359 |
-
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
self.source_resblocks.append(
|
| 363 |
-
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
self.resblocks = nn.ModuleList()
|
| 367 |
-
for i in range(len(self.ups)):
|
| 368 |
-
ch = base_channels // (2**(i + 1))
|
| 369 |
-
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 370 |
-
self.resblocks.append(ResBlock(ch, k, d))
|
| 371 |
-
|
| 372 |
-
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
| 373 |
-
self.ups.apply(init_weights)
|
| 374 |
-
self.conv_post.apply(init_weights)
|
| 375 |
-
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
| 376 |
-
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
| 377 |
-
self.f0_predictor = f0_predictor
|
| 378 |
-
|
| 379 |
-
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
| 380 |
-
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 381 |
-
|
| 382 |
-
har_source, _, _ = self.m_source(f0)
|
| 383 |
-
return har_source.transpose(1, 2)
|
| 384 |
-
|
| 385 |
-
def _stft(self, x):
|
| 386 |
-
spec = torch.stft(
|
| 387 |
-
x,
|
| 388 |
-
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
| 389 |
-
return_complex=True)
|
| 390 |
-
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
| 391 |
-
return spec[..., 0], spec[..., 1]
|
| 392 |
-
|
| 393 |
-
def _istft(self, magnitude, phase):
|
| 394 |
-
magnitude = torch.clip(magnitude, max=1e2)
|
| 395 |
-
real = magnitude * torch.cos(phase)
|
| 396 |
-
img = magnitude * torch.sin(phase)
|
| 397 |
-
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
| 398 |
-
return inverse_transform
|
| 399 |
-
|
| 400 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 401 |
-
f0
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
x =
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
si = self.
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
x =
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
x =
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
remove_weight_norm(self.
|
| 445 |
-
self.
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""HIFI-GAN"""
|
| 16 |
+
|
| 17 |
+
import typing as tp
|
| 18 |
+
import numpy as np
|
| 19 |
+
from scipy.signal import get_window
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from torch.nn import Conv1d
|
| 24 |
+
from torch.nn import ConvTranspose1d
|
| 25 |
+
from torch.nn.utils import remove_weight_norm
|
| 26 |
+
from torch.nn.utils import weight_norm
|
| 27 |
+
from torch.distributions.uniform import Uniform
|
| 28 |
+
|
| 29 |
+
from torch import sin
|
| 30 |
+
from torch.nn.parameter import Parameter
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
"""hifigan based generator implementation.
|
| 34 |
+
|
| 35 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
| 36 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
| 37 |
+
https://github.com/NVIDIA/BigVGAN
|
| 38 |
+
|
| 39 |
+
"""
|
| 40 |
+
class Snake(nn.Module):
|
| 41 |
+
'''
|
| 42 |
+
Implementation of a sine-based periodic activation function
|
| 43 |
+
Shape:
|
| 44 |
+
- Input: (B, C, T)
|
| 45 |
+
- Output: (B, C, T), same shape as the input
|
| 46 |
+
Parameters:
|
| 47 |
+
- alpha - trainable parameter
|
| 48 |
+
References:
|
| 49 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
| 50 |
+
https://arxiv.org/abs/2006.08195
|
| 51 |
+
Examples:
|
| 52 |
+
>>> a1 = snake(256)
|
| 53 |
+
>>> x = torch.randn(256)
|
| 54 |
+
>>> x = a1(x)
|
| 55 |
+
'''
|
| 56 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
| 57 |
+
'''
|
| 58 |
+
Initialization.
|
| 59 |
+
INPUT:
|
| 60 |
+
- in_features: shape of the input
|
| 61 |
+
- alpha: trainable parameter
|
| 62 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
| 63 |
+
alpha will be trained along with the rest of your model.
|
| 64 |
+
'''
|
| 65 |
+
super(Snake, self).__init__()
|
| 66 |
+
self.in_features = in_features
|
| 67 |
+
|
| 68 |
+
# initialize alpha
|
| 69 |
+
self.alpha_logscale = alpha_logscale
|
| 70 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
| 71 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
| 72 |
+
else: # linear scale alphas initialized to ones
|
| 73 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
| 74 |
+
|
| 75 |
+
self.alpha.requires_grad = alpha_trainable
|
| 76 |
+
|
| 77 |
+
self.no_div_by_zero = 0.000000001
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
'''
|
| 81 |
+
Forward pass of the function.
|
| 82 |
+
Applies the function to the input elementwise.
|
| 83 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
| 84 |
+
'''
|
| 85 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
| 86 |
+
if self.alpha_logscale:
|
| 87 |
+
alpha = torch.exp(alpha)
|
| 88 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
| 89 |
+
|
| 90 |
+
return x
|
| 91 |
+
|
| 92 |
+
def get_padding(kernel_size, dilation=1):
|
| 93 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 97 |
+
classname = m.__class__.__name__
|
| 98 |
+
if classname.find("Conv") != -1:
|
| 99 |
+
m.weight.data.normal_(mean, std)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class ResBlock(torch.nn.Module):
|
| 104 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
| 105 |
+
def __init__(
|
| 106 |
+
self,
|
| 107 |
+
channels: int = 512,
|
| 108 |
+
kernel_size: int = 3,
|
| 109 |
+
dilations: tp.List[int] = [1, 3, 5],
|
| 110 |
+
):
|
| 111 |
+
super(ResBlock, self).__init__()
|
| 112 |
+
self.convs1 = nn.ModuleList()
|
| 113 |
+
self.convs2 = nn.ModuleList()
|
| 114 |
+
|
| 115 |
+
for dilation in dilations:
|
| 116 |
+
self.convs1.append(
|
| 117 |
+
weight_norm(
|
| 118 |
+
Conv1d(
|
| 119 |
+
channels,
|
| 120 |
+
channels,
|
| 121 |
+
kernel_size,
|
| 122 |
+
1,
|
| 123 |
+
dilation=dilation,
|
| 124 |
+
padding=get_padding(kernel_size, dilation)
|
| 125 |
+
)
|
| 126 |
+
)
|
| 127 |
+
)
|
| 128 |
+
self.convs2.append(
|
| 129 |
+
weight_norm(
|
| 130 |
+
Conv1d(
|
| 131 |
+
channels,
|
| 132 |
+
channels,
|
| 133 |
+
kernel_size,
|
| 134 |
+
1,
|
| 135 |
+
dilation=1,
|
| 136 |
+
padding=get_padding(kernel_size, 1)
|
| 137 |
+
)
|
| 138 |
+
)
|
| 139 |
+
)
|
| 140 |
+
self.convs1.apply(init_weights)
|
| 141 |
+
self.convs2.apply(init_weights)
|
| 142 |
+
self.activations1 = nn.ModuleList([
|
| 143 |
+
Snake(channels, alpha_logscale=False)
|
| 144 |
+
for _ in range(len(self.convs1))
|
| 145 |
+
])
|
| 146 |
+
self.activations2 = nn.ModuleList([
|
| 147 |
+
Snake(channels, alpha_logscale=False)
|
| 148 |
+
for _ in range(len(self.convs2))
|
| 149 |
+
])
|
| 150 |
+
|
| 151 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 152 |
+
for idx in range(len(self.convs1)):
|
| 153 |
+
xt = self.activations1[idx](x)
|
| 154 |
+
xt = self.convs1[idx](xt)
|
| 155 |
+
xt = self.activations2[idx](xt)
|
| 156 |
+
xt = self.convs2[idx](xt)
|
| 157 |
+
x = xt + x
|
| 158 |
+
return x
|
| 159 |
+
|
| 160 |
+
def remove_weight_norm(self):
|
| 161 |
+
for idx in range(len(self.convs1)):
|
| 162 |
+
remove_weight_norm(self.convs1[idx])
|
| 163 |
+
remove_weight_norm(self.convs2[idx])
|
| 164 |
+
|
| 165 |
+
class SineGen(torch.nn.Module):
|
| 166 |
+
""" Definition of sine generator
|
| 167 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 168 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 169 |
+
voiced_threshold = 0,
|
| 170 |
+
flag_for_pulse=False)
|
| 171 |
+
samp_rate: sampling rate in Hz
|
| 172 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 173 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 174 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 175 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 176 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 177 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 178 |
+
segment is always sin(np.pi) or cos(0)
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
| 182 |
+
sine_amp=0.1, noise_std=0.003,
|
| 183 |
+
voiced_threshold=0):
|
| 184 |
+
super(SineGen, self).__init__()
|
| 185 |
+
self.sine_amp = sine_amp
|
| 186 |
+
self.noise_std = noise_std
|
| 187 |
+
self.harmonic_num = harmonic_num
|
| 188 |
+
self.sampling_rate = samp_rate
|
| 189 |
+
self.voiced_threshold = voiced_threshold
|
| 190 |
+
|
| 191 |
+
def _f02uv(self, f0):
|
| 192 |
+
# generate uv signal
|
| 193 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 194 |
+
return uv
|
| 195 |
+
|
| 196 |
+
@torch.no_grad()
|
| 197 |
+
def forward(self, f0):
|
| 198 |
+
"""
|
| 199 |
+
:param f0: [B, 1, sample_len], Hz
|
| 200 |
+
:return: [B, 1, sample_len]
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
| 204 |
+
for i in range(self.harmonic_num + 1):
|
| 205 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
| 206 |
+
|
| 207 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
| 208 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
| 209 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
| 210 |
+
phase_vec[:, 0, :] = 0
|
| 211 |
+
|
| 212 |
+
# generate sine waveforms
|
| 213 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
| 214 |
+
|
| 215 |
+
# generate uv signal
|
| 216 |
+
uv = self._f02uv(f0)
|
| 217 |
+
|
| 218 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 219 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 220 |
+
# . for voiced regions is self.noise_std
|
| 221 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 222 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 223 |
+
|
| 224 |
+
# first: set the unvoiced part to 0 by uv
|
| 225 |
+
# then: additive noise
|
| 226 |
+
sine_waves = sine_waves * uv + noise
|
| 227 |
+
return sine_waves, uv, noise
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 231 |
+
""" SourceModule for hn-nsf
|
| 232 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 233 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 234 |
+
sampling_rate: sampling_rate in Hz
|
| 235 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 236 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 237 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 238 |
+
note that amplitude of noise in unvoiced is decided
|
| 239 |
+
by sine_amp
|
| 240 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 241 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 242 |
+
F0_sampled (batchsize, length, 1)
|
| 243 |
+
Sine_source (batchsize, length, 1)
|
| 244 |
+
noise_source (batchsize, length 1)
|
| 245 |
+
uv (batchsize, length, 1)
|
| 246 |
+
"""
|
| 247 |
+
|
| 248 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 249 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 250 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 251 |
+
|
| 252 |
+
self.sine_amp = sine_amp
|
| 253 |
+
self.noise_std = add_noise_std
|
| 254 |
+
|
| 255 |
+
# to produce sine waveforms
|
| 256 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
| 257 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 258 |
+
|
| 259 |
+
# to merge source harmonics into a single excitation
|
| 260 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 261 |
+
self.l_tanh = torch.nn.Tanh()
|
| 262 |
+
|
| 263 |
+
def forward(self, x):
|
| 264 |
+
"""
|
| 265 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 266 |
+
F0_sampled (batchsize, length, 1)
|
| 267 |
+
Sine_source (batchsize, length, 1)
|
| 268 |
+
noise_source (batchsize, length 1)
|
| 269 |
+
"""
|
| 270 |
+
# source for harmonic branch
|
| 271 |
+
with torch.no_grad():
|
| 272 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
| 273 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
| 274 |
+
uv = uv.transpose(1, 2)
|
| 275 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 276 |
+
|
| 277 |
+
# source for noise branch, in the same shape as uv
|
| 278 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 279 |
+
return sine_merge, noise, uv
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class HiFTGenerator(nn.Module):
|
| 283 |
+
"""
|
| 284 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
| 285 |
+
https://arxiv.org/abs/2309.09493
|
| 286 |
+
"""
|
| 287 |
+
def __init__(
|
| 288 |
+
self,
|
| 289 |
+
in_channels: int = 80,
|
| 290 |
+
base_channels: int = 512,
|
| 291 |
+
nb_harmonics: int = 8,
|
| 292 |
+
sampling_rate: int = 22050,
|
| 293 |
+
nsf_alpha: float = 0.1,
|
| 294 |
+
nsf_sigma: float = 0.003,
|
| 295 |
+
nsf_voiced_threshold: float = 10,
|
| 296 |
+
upsample_rates: tp.List[int] = [8, 8],
|
| 297 |
+
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
| 298 |
+
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
| 299 |
+
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
| 300 |
+
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 301 |
+
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
| 302 |
+
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
| 303 |
+
lrelu_slope: float = 0.1,
|
| 304 |
+
audio_limit: float = 0.99,
|
| 305 |
+
f0_predictor: torch.nn.Module = None,
|
| 306 |
+
):
|
| 307 |
+
super(HiFTGenerator, self).__init__()
|
| 308 |
+
|
| 309 |
+
self.out_channels = 1
|
| 310 |
+
self.nb_harmonics = nb_harmonics
|
| 311 |
+
self.sampling_rate = sampling_rate
|
| 312 |
+
self.istft_params = istft_params
|
| 313 |
+
self.lrelu_slope = lrelu_slope
|
| 314 |
+
self.audio_limit = audio_limit
|
| 315 |
+
|
| 316 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 317 |
+
self.num_upsamples = len(upsample_rates)
|
| 318 |
+
self.m_source = SourceModuleHnNSF(
|
| 319 |
+
sampling_rate=sampling_rate,
|
| 320 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
| 321 |
+
harmonic_num=nb_harmonics,
|
| 322 |
+
sine_amp=nsf_alpha,
|
| 323 |
+
add_noise_std=nsf_sigma,
|
| 324 |
+
voiced_threshod=nsf_voiced_threshold)
|
| 325 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
| 326 |
+
|
| 327 |
+
self.conv_pre = weight_norm(
|
| 328 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# Up
|
| 332 |
+
self.ups = nn.ModuleList()
|
| 333 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 334 |
+
self.ups.append(
|
| 335 |
+
weight_norm(
|
| 336 |
+
ConvTranspose1d(
|
| 337 |
+
base_channels // (2**i),
|
| 338 |
+
base_channels // (2**(i + 1)),
|
| 339 |
+
k,
|
| 340 |
+
u,
|
| 341 |
+
padding=(k - u) // 2,
|
| 342 |
+
)
|
| 343 |
+
)
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# Down
|
| 347 |
+
self.source_downs = nn.ModuleList()
|
| 348 |
+
self.source_resblocks = nn.ModuleList()
|
| 349 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
| 350 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
| 351 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
| 352 |
+
source_resblock_dilation_sizes)):
|
| 353 |
+
if u == 1:
|
| 354 |
+
self.source_downs.append(
|
| 355 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
| 356 |
+
)
|
| 357 |
+
else:
|
| 358 |
+
self.source_downs.append(
|
| 359 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
self.source_resblocks.append(
|
| 363 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
self.resblocks = nn.ModuleList()
|
| 367 |
+
for i in range(len(self.ups)):
|
| 368 |
+
ch = base_channels // (2**(i + 1))
|
| 369 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 370 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
| 371 |
+
|
| 372 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
| 373 |
+
self.ups.apply(init_weights)
|
| 374 |
+
self.conv_post.apply(init_weights)
|
| 375 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
| 376 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
| 377 |
+
self.f0_predictor = f0_predictor
|
| 378 |
+
|
| 379 |
+
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
| 380 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 381 |
+
|
| 382 |
+
har_source, _, _ = self.m_source(f0)
|
| 383 |
+
return har_source.transpose(1, 2)
|
| 384 |
+
|
| 385 |
+
def _stft(self, x):
|
| 386 |
+
spec = torch.stft(
|
| 387 |
+
x,
|
| 388 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
| 389 |
+
return_complex=True)
|
| 390 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
| 391 |
+
return spec[..., 0], spec[..., 1]
|
| 392 |
+
|
| 393 |
+
def _istft(self, magnitude, phase):
|
| 394 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
| 395 |
+
real = magnitude * torch.cos(phase)
|
| 396 |
+
img = magnitude * torch.sin(phase)
|
| 397 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
| 398 |
+
return inverse_transform
|
| 399 |
+
|
| 400 |
+
def forward(self, x: torch.Tensor, f0=None) -> torch.Tensor:
|
| 401 |
+
if f0 is None:
|
| 402 |
+
f0 = self.f0_predictor(x)
|
| 403 |
+
s = self._f02source(f0)
|
| 404 |
+
|
| 405 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
| 406 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
| 407 |
+
|
| 408 |
+
x = self.conv_pre(x)
|
| 409 |
+
for i in range(self.num_upsamples):
|
| 410 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
| 411 |
+
x = self.ups[i](x)
|
| 412 |
+
|
| 413 |
+
if i == self.num_upsamples - 1:
|
| 414 |
+
x = self.reflection_pad(x)
|
| 415 |
+
|
| 416 |
+
# fusion
|
| 417 |
+
si = self.source_downs[i](s_stft)
|
| 418 |
+
si = self.source_resblocks[i](si)
|
| 419 |
+
x = x + si
|
| 420 |
+
|
| 421 |
+
xs = None
|
| 422 |
+
for j in range(self.num_kernels):
|
| 423 |
+
if xs is None:
|
| 424 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 425 |
+
else:
|
| 426 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 427 |
+
x = xs / self.num_kernels
|
| 428 |
+
|
| 429 |
+
x = F.leaky_relu(x)
|
| 430 |
+
x = self.conv_post(x)
|
| 431 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
| 432 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
| 433 |
+
|
| 434 |
+
x = self._istft(magnitude, phase)
|
| 435 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
| 436 |
+
return x
|
| 437 |
+
|
| 438 |
+
def remove_weight_norm(self):
|
| 439 |
+
print('Removing weight norm...')
|
| 440 |
+
for l in self.ups:
|
| 441 |
+
remove_weight_norm(l)
|
| 442 |
+
for l in self.resblocks:
|
| 443 |
+
l.remove_weight_norm()
|
| 444 |
+
remove_weight_norm(self.conv_pre)
|
| 445 |
+
remove_weight_norm(self.conv_post)
|
| 446 |
+
self.source_module.remove_weight_norm()
|
| 447 |
+
for l in self.source_downs:
|
| 448 |
+
remove_weight_norm(l)
|
| 449 |
+
for l in self.source_resblocks:
|
| 450 |
+
l.remove_weight_norm()
|
| 451 |
+
|
| 452 |
+
@torch.inference_mode()
|
| 453 |
+
def inference(self, mel: torch.Tensor, f0=None) -> torch.Tensor:
|
| 454 |
+
return self.forward(x=mel, f0=f0)
|