Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pixeltable as pxt
|
| 3 |
+
from pixeltable.iterators import FrameIterator, StringSplitter
|
| 4 |
+
from pixeltable.functions.video import extract_audio
|
| 5 |
+
from pixeltable.functions.audio import get_metadata
|
| 6 |
+
from pixeltable.functions import openai
|
| 7 |
+
import os
|
| 8 |
+
import getpass
|
| 9 |
+
import numpy as np
|
| 10 |
+
from pixeltable.functions.huggingface import sentence_transformer
|
| 11 |
+
|
| 12 |
+
# Store OpenAI API Key
|
| 13 |
+
if 'OPENAI_API_KEY' not in os.environ:
|
| 14 |
+
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
|
| 15 |
+
|
| 16 |
+
MAX_VIDEO_SIZE_MB = 35
|
| 17 |
+
|
| 18 |
+
def process_video(video_file, progress=gr.Progress()):
|
| 19 |
+
|
| 20 |
+
progress(0, desc="Initializing...")
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
# Create a Table, a View, and Computed Columns
|
| 24 |
+
pxt.drop_dir('gong_demo', force=True)
|
| 25 |
+
pxt.create_dir('gong_demo')
|
| 26 |
+
|
| 27 |
+
calls_table = pxt.create_table(
|
| 28 |
+
'gong_demo.calls', {
|
| 29 |
+
"video": pxt.VideoType(nullable=True),
|
| 30 |
+
}
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
frames_view = pxt.create_view(
|
| 34 |
+
"gong_demo.frames",
|
| 35 |
+
calls_table,
|
| 36 |
+
iterator=FrameIterator.create(video=calls_table.video, fps=1)
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Create computed columns to store transformations and persist outputs
|
| 40 |
+
calls_table['audio'] = extract_audio(calls_table.video, format='mp3')
|
| 41 |
+
calls_table['metadata'] = get_metadata(calls_table.audio)
|
| 42 |
+
calls_table['transcription'] = openai.transcriptions(audio=calls_table.audio, model='whisper-1')
|
| 43 |
+
calls_table['transcription_text'] = calls_table.transcription.text.astype(pxt.StringType())
|
| 44 |
+
|
| 45 |
+
sentences_view = pxt.create_view(
|
| 46 |
+
'gong_demo.sentences',
|
| 47 |
+
calls_table,
|
| 48 |
+
iterator=StringSplitter.create(
|
| 49 |
+
text=calls_table.transcription_text,
|
| 50 |
+
separators='sentence'
|
| 51 |
+
)
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
@pxt.expr_udf
|
| 55 |
+
def e5_embed(text: str) -> np.ndarray:
|
| 56 |
+
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
|
| 57 |
+
|
| 58 |
+
sentences_view.add_embedding_index('text', string_embed=e5_embed)
|
| 59 |
+
|
| 60 |
+
progress(0.2, desc="Creating UDFs...")
|
| 61 |
+
|
| 62 |
+
# Custom User-Defined Function (UDF) for Generating Insights
|
| 63 |
+
@pxt.udf
|
| 64 |
+
def generate_insights(transcription: str) -> list[dict]:
|
| 65 |
+
system_msg = 'You are an AI assistant that analyzes call transcriptions. Analyze the following call transcription and provide insights on: 1. Main topics discussed 2. Action items 3. Sentiment analysis 4. Key questions asked'
|
| 66 |
+
user_msg = f'Transcription: "{transcription}"'
|
| 67 |
+
return [
|
| 68 |
+
{'role': 'system', 'content': system_msg},
|
| 69 |
+
{'role': 'user', 'content': user_msg}
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
# Apply the UDF to create a new column
|
| 73 |
+
calls_table['insights_prompt'] = generate_insights(calls_table.transcription_text)
|
| 74 |
+
|
| 75 |
+
progress(0.4, desc="Generating insights...")
|
| 76 |
+
|
| 77 |
+
# Generate insights using OpenAI's chat completion API
|
| 78 |
+
calls_table['insights_response'] = openai.chat_completions(messages=calls_table.insights_prompt, model='gpt-3.5-turbo', max_tokens=500)
|
| 79 |
+
|
| 80 |
+
# Extract the content of the response
|
| 81 |
+
calls_table['insights'] = calls_table.insights_response.choices[0].message.content
|
| 82 |
+
|
| 83 |
+
if not video_file:
|
| 84 |
+
return "Please upload a video file.", ""
|
| 85 |
+
|
| 86 |
+
# Check video file size
|
| 87 |
+
video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB
|
| 88 |
+
if video_size > MAX_VIDEO_SIZE_MB:
|
| 89 |
+
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", ""
|
| 90 |
+
|
| 91 |
+
progress(0.6, desc="Processing video...")
|
| 92 |
+
|
| 93 |
+
# Insert a video into the table
|
| 94 |
+
calls_table.insert([{"video": video_file}])
|
| 95 |
+
|
| 96 |
+
progress(0.8, desc="Retrieving results...")
|
| 97 |
+
|
| 98 |
+
# Retrieve transcription and insights
|
| 99 |
+
result = calls_table.select(calls_table.transcription_text, calls_table.insights).tail(1)
|
| 100 |
+
transcription = result['transcription_text'][0]
|
| 101 |
+
insights = result['insights'][0]
|
| 102 |
+
|
| 103 |
+
progress(1.0, desc="Processing complete")
|
| 104 |
+
|
| 105 |
+
return transcription, insights, "Processing complete"
|
| 106 |
+
|
| 107 |
+
except Exception as e:
|
| 108 |
+
return f"An error occurred during video processing: {str(e)}", ""
|
| 109 |
+
|
| 110 |
+
# Perform similarity search
|
| 111 |
+
def similarity_search(query, num_results, progress=gr.Progress()):
|
| 112 |
+
|
| 113 |
+
sentences_view = pxt.get_table('gong_demo.sentences')
|
| 114 |
+
|
| 115 |
+
progress(0.5, desc="Performing search...")
|
| 116 |
+
|
| 117 |
+
sim = sentences_view.text.similarity(query)
|
| 118 |
+
results = sentences_view.order_by(sim, asc=False).limit(num_results).select(sentences_view.text, sim=sim).collect().to_pandas()
|
| 119 |
+
return results
|
| 120 |
+
|
| 121 |
+
progress(1.0, desc="Search complete")
|
| 122 |
+
|
| 123 |
+
def chatbot_response(message, chat_history):
|
| 124 |
+
@pxt.udf
|
| 125 |
+
def create_chatbot_prompt(context: str, question: str) -> list[dict]:
|
| 126 |
+
system_message = "You are an AI assistant that answers questions about a call based on the provided context. If the answer cannot be found in the context, say that you don't know."
|
| 127 |
+
user_message = f"Context:\n{context}\n\nQuestion: {question}"
|
| 128 |
+
return [
|
| 129 |
+
{"role": "system", "content": system_message},
|
| 130 |
+
{"role": "user", "content": user_message}
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
sentences_view = pxt.get_table('gong_demo.sentences')
|
| 135 |
+
|
| 136 |
+
# Perform similarity search to get relevant context
|
| 137 |
+
sim = sentences_view.text.similarity(message)
|
| 138 |
+
context = sentences_view.order_by(sim, asc=False).limit(5).select(sentences_view.text, sim=sim).collect()
|
| 139 |
+
|
| 140 |
+
# Prepare the context for the prompt
|
| 141 |
+
context_text = "\n".join([row['text'] for row in context])
|
| 142 |
+
|
| 143 |
+
# Create a temporary table for the chatbot interaction
|
| 144 |
+
temp_table = pxt.create_table('gong_demo.temp_chatbot', {'question': pxt.StringType()})
|
| 145 |
+
temp_table.insert([{'question': message}])
|
| 146 |
+
|
| 147 |
+
# Create computed columns for the prompt and response
|
| 148 |
+
temp_table['chatbot_prompt'] = create_chatbot_prompt(context_text, temp_table.question)
|
| 149 |
+
temp_table['chatbot_response'] = openai.chat_completions(
|
| 150 |
+
messages=temp_table.chatbot_prompt,
|
| 151 |
+
model='gpt-3.5-turbo',
|
| 152 |
+
max_tokens=150
|
| 153 |
+
)
|
| 154 |
+
temp_table['answer'] = temp_table.chatbot_response.choices[0].message.content
|
| 155 |
+
|
| 156 |
+
answer = temp_table.select(temp_table.answer).collect()['answer'][0]
|
| 157 |
+
|
| 158 |
+
# Clean up the temporary table
|
| 159 |
+
pxt.drop_table('gong_demo.temp_chatbot', force=True)
|
| 160 |
+
|
| 161 |
+
chat_history.append((message, answer))
|
| 162 |
+
return "", chat_history # Return both expected outputs
|
| 163 |
+
except Exception as e:
|
| 164 |
+
error_message = f"An error occurred: {str(e)}"
|
| 165 |
+
chat_history.append((message, error_message))
|
| 166 |
+
return "", chat_history # Return both expec
|
| 167 |
+
|
| 168 |
+
# Gradio interface
|
| 169 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
| 170 |
+
gr.Markdown(
|
| 171 |
+
"""
|
| 172 |
+
<div style="text-align: left; margin-bottom: 20px;">
|
| 173 |
+
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
|
| 174 |
+
<h1 style="margin-top: 10px;">Call Analysis AI Tool</h1>
|
| 175 |
+
</div>
|
| 176 |
+
"""
|
| 177 |
+
)
|
| 178 |
+
gr.HTML(
|
| 179 |
+
"""
|
| 180 |
+
<p style="text-align: left;">
|
| 181 |
+
Powered by <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a>
|
| 182 |
+
- Analyze calls, extract insights, and interact with AI-powered assistance.
|
| 183 |
+
</p>
|
| 184 |
+
"""
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
with gr.Row():
|
| 188 |
+
with gr.Column():
|
| 189 |
+
with gr.Accordion("π― What does it do?", open=False):
|
| 190 |
+
gr.Markdown("""
|
| 191 |
+
- ποΈ Transcribes call audio to text
|
| 192 |
+
- π‘ Generates insights and key points
|
| 193 |
+
- π Enables content-based similarity search
|
| 194 |
+
- π€ Provides an AI chatbot for in-depth analysis
|
| 195 |
+
- π Offers summaries of call data
|
| 196 |
+
""")
|
| 197 |
+
with gr.Column():
|
| 198 |
+
with gr.Accordion("π οΈ How does it work?", open=False):
|
| 199 |
+
gr.Markdown("""
|
| 200 |
+
1. π€ Upload your call recording (video)
|
| 201 |
+
2. βοΈ AI processes and analyzes the content
|
| 202 |
+
3. π Review the transcript and generated insights
|
| 203 |
+
4. π Use similarity search to explore specific topics
|
| 204 |
+
5. π¬ Interact with the AI chatbot for deeper understanding
|
| 205 |
+
""")
|
| 206 |
+
|
| 207 |
+
with gr.Row():
|
| 208 |
+
with gr.Column(scale=1):
|
| 209 |
+
video_file = gr.Video(
|
| 210 |
+
label=f"Upload Call Recording (max {MAX_VIDEO_SIZE_MB} MB)",
|
| 211 |
+
)
|
| 212 |
+
process_btn = gr.Button("Analyze Call", variant="primary")
|
| 213 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
| 214 |
+
|
| 215 |
+
with gr.Column(scale=2):
|
| 216 |
+
with gr.Tabs() as tabs:
|
| 217 |
+
with gr.TabItem("π Transcript"):
|
| 218 |
+
output_transcription = gr.Textbox(label="Call Transcription", lines=15)
|
| 219 |
+
|
| 220 |
+
with gr.TabItem("π‘ Insights"):
|
| 221 |
+
output_insights = gr.Textbox(label="Key Takeaways", lines=10)
|
| 222 |
+
|
| 223 |
+
with gr.TabItem("π Similarity Search"):
|
| 224 |
+
with gr.Row():
|
| 225 |
+
similarity_query = gr.Textbox(label="Search Query", placeholder="Enter a topic or phrase to search for")
|
| 226 |
+
num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results")
|
| 227 |
+
similarity_search_btn = gr.Button("Search", variant="secondary")
|
| 228 |
+
similarity_results = gr.DataFrame(
|
| 229 |
+
headers=["Relevant Text", "Similarity Score"],
|
| 230 |
+
label="Search Results"
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
with gr.TabItem("π€ AI Assistant"):
|
| 234 |
+
chatbot = gr.Chatbot(height=400, label="Chat with AI about the call")
|
| 235 |
+
with gr.Row():
|
| 236 |
+
msg = gr.Textbox(label="Ask a question about the call", placeholder="e.g., What were the main points discussed?", scale=4)
|
| 237 |
+
send_btn = gr.Button("Send", variant="secondary", scale=1)
|
| 238 |
+
clear = gr.Button("Clear Chat")
|
| 239 |
+
|
| 240 |
+
process_btn.click(
|
| 241 |
+
process_video,
|
| 242 |
+
inputs=[video_file],
|
| 243 |
+
outputs=[output_transcription, output_insights, status_output],
|
| 244 |
+
show_progress="full"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
similarity_search_btn.click(
|
| 248 |
+
similarity_search,
|
| 249 |
+
inputs=[similarity_query, num_results],
|
| 250 |
+
outputs=[similarity_results]
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
msg.submit(chatbot_response, [msg, chatbot], [msg, chatbot])
|
| 254 |
+
send_btn.click(chatbot_response, [msg, chatbot], [msg, chatbot])
|
| 255 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 256 |
+
|
| 257 |
+
if __name__ == "__main__":
|
| 258 |
+
demo.launch(debug=True)
|