import modal from modal import App, Image # Setup - define our infrastructure with code! app = modal.App("pricer-service") image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate", "peft") secrets = [modal.Secret.from_name("hf-secret")] # Constants GPU = "T4" BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" PROJECT_NAME = "pricer" HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results. RUN_NAME = "2024-09-13_13.04.39" PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}" REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36" FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}" @app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800) def price(description: str) -> float: import os import re import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed from peft import PeftModel QUESTION = "How much does this cost to the nearest dollar?" PREFIX = "Price is $" prompt = f"{QUESTION}\n{description}\n{PREFIX}" # Quant Config quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4" ) # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" base_model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, quantization_config=quant_config, device_map="auto" ) fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION) set_seed(42) inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda") attention_mask = torch.ones(inputs.shape, device="cuda") outputs = fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) result = tokenizer.decode(outputs[0]) contents = result.split("Price is $")[1] contents = contents.replace(',','') match = re.search(r"[-+]?\d*\.\d+|\d+", contents) return float(match.group()) if match else 0