import modal from modal import App, Volume, Image # Setup app = modal.App("llama") image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate") secrets = [modal.Secret.from_name("hf-secret")] GPU = "T4" MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B" # "google/gemma-2-2b" @app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800) def generate(prompt: str) -> str: import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed # Quant Config quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4" ) # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, quantization_config=quant_config, device_map="auto" ) set_seed(42) inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda") attention_mask = torch.ones(inputs.shape, device="cuda") outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) return tokenizer.decode(outputs[0])