from typing import Optional from transformers import AutoTokenizer import re BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" MIN_TOKENS = 150 MAX_TOKENS = 160 MIN_CHARS = 300 CEILING_CHARS = MAX_TOKENS * 7 class Item: """ An Item is a cleaned, curated datapoint of a Product with a Price """ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) PREFIX = "Price is $" QUESTION = "How much does this cost to the nearest dollar?" REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "] title: str price: float category: str token_count: int = 0 details: Optional[str] prompt: Optional[str] = None include = False def __init__(self, data, price): self.title = data['title'] self.price = price self.parse(data) def scrub_details(self): """ Clean up the details string by removing common text that doesn't add value """ details = self.details for remove in self.REMOVALS: details = details.replace(remove, "") return details def scrub(self, stuff): """ Clean up the provided text by removing unnecessary characters and whitespace Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers """ stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip() stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",") words = stuff.split(' ') select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)] return " ".join(select) def parse(self, data): """ Parse this datapoint and if it fits within the allowed Token range, then set include to True """ contents = '\n'.join(data['description']) if contents: contents += '\n' features = '\n'.join(data['features']) if features: contents += features + '\n' self.details = data['details'] if self.details: contents += self.scrub_details() + '\n' if len(contents) > MIN_CHARS: contents = contents[:CEILING_CHARS] text = f"{self.scrub(self.title)}\n{self.scrub(contents)}" tokens = self.tokenizer.encode(text, add_special_tokens=False) if len(tokens) > MIN_TOKENS: tokens = tokens[:MAX_TOKENS] text = self.tokenizer.decode(tokens) self.make_prompt(text) self.include = True def make_prompt(self, text): """ Set the prompt instance variable to be a prompt appropriate for training """ self.prompt = f"{self.QUESTION}\n\n{text}\n\n" self.prompt += f"{self.PREFIX}{str(round(self.price))}.00" self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False)) def test_prompt(self): """ Return a prompt suitable for testing, with the actual price removed """ return self.prompt.split(self.PREFIX)[0] + self.PREFIX def __repr__(self): """ Return a String version of this Item """ return f"<{self.title} = ${self.price}>"