import os import sys import logging import json from typing import List, Optional # from twilio.rest import Client from dotenv import load_dotenv import chromadb from agents.planning_agent import PlanningAgent from agents.deals import Opportunity from sklearn.manifold import TSNE import numpy as np # Colors for logging BG_BLUE = '\033[44m' WHITE = '\033[37m' RESET = '\033[0m' # Colors for plot CATEGORIES = ['Appliances', 'Automotive', 'Cell_Phones_and_Accessories', 'Electronics','Musical_Instruments', 'Office_Products', 'Tools_and_Home_Improvement', 'Toys_and_Games'] COLORS = ['red', 'blue', 'brown', 'orange', 'yellow', 'green' , 'purple', 'cyan'] def init_logging(): root = logging.getLogger() root.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) formatter = logging.Formatter( "[%(asctime)s] [Agents] [%(levelname)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S %z", ) handler.setFormatter(formatter) root.addHandler(handler) class DealAgentFramework: DB = "products_vectorstore" MEMORY_FILENAME = "memory.json" def __init__(self): init_logging() load_dotenv() client = chromadb.PersistentClient(path=self.DB) self.memory = self.read_memory() self.collection = client.get_or_create_collection('products') self.planner = None def init_agents_as_needed(self): if not self.planner: self.log("Initializing Agent Framework") self.planner = PlanningAgent(self.collection) self.log("Agent Framework is ready") def read_memory(self) -> List[Opportunity]: if os.path.exists(self.MEMORY_FILENAME): with open(self.MEMORY_FILENAME, "r") as file: data = json.load(file) opportunities = [Opportunity(**item) for item in data] return opportunities return [] def write_memory(self) -> None: data = [opportunity.dict() for opportunity in self.memory] with open(self.MEMORY_FILENAME, "w") as file: json.dump(data, file, indent=2) def log(self, message: str): text = BG_BLUE + WHITE + "[Agent Framework] " + message + RESET logging.info(text) def run(self) -> List[Opportunity]: self.init_agents_as_needed() logging.info("Kicking off Planning Agent") result = self.planner.plan(memory=self.memory) logging.info(f"Planning Agent has completed and returned: {result}") if result: self.memory.append(result) self.write_memory() return self.memory @classmethod def get_plot_data(cls, max_datapoints=10000): client = chromadb.PersistentClient(path=cls.DB) collection = client.get_or_create_collection('products') result = collection.get(include=['embeddings', 'documents', 'metadatas'], limit=max_datapoints) vectors = np.array(result['embeddings']) documents = result['documents'] categories = [metadata['category'] for metadata in result['metadatas']] colors = [COLORS[CATEGORIES.index(c)] for c in categories] tsne = TSNE(n_components=3, random_state=42, n_jobs=-1) reduced_vectors = tsne.fit_transform(vectors) return documents, reduced_vectors, colors if __name__=="__main__": DealAgentFramework().run()