import logging import queue import threading import time import gradio as gr from deal_agent_framework import DealAgentFramework from agents.deals import Opportunity, Deal from log_utils import reformat import plotly.graph_objects as go class QueueHandler(logging.Handler): def __init__(self, log_queue): super().__init__() self.log_queue = log_queue def emit(self, record): self.log_queue.put(self.format(record)) def html_for(log_data): output = '
'.join(log_data[-18:]) return f"""
{output}
""" def setup_logging(log_queue): handler = QueueHandler(log_queue) formatter = logging.Formatter( "[%(asctime)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S %z", ) handler.setFormatter(formatter) logger = logging.getLogger() logger.addHandler(handler) logger.setLevel(logging.INFO) class App: def __init__(self): self.agent_framework = None def get_agent_framework(self): if not self.agent_framework: self.agent_framework = DealAgentFramework() self.agent_framework.init_agents_as_needed() return self.agent_framework def run(self): with gr.Blocks(title="The Price is Right", fill_width=True) as ui: log_data = gr.State([]) def table_for(opps): return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps] def update_output(log_data, log_queue, result_queue): initial_result = table_for(self.get_agent_framework().memory) final_result = None while True: try: message = log_queue.get_nowait() log_data.append(reformat(message)) yield log_data, html_for(log_data), final_result or initial_result except queue.Empty: try: final_result = result_queue.get_nowait() yield log_data, html_for(log_data), final_result or initial_result except queue.Empty: if final_result is not None: break time.sleep(0.1) def get_initial_plot(): fig = go.Figure() fig.update_layout( title='Loading vector DB...', height=400, ) return fig def get_plot(): documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000) # Create the 3D scatter plot fig = go.Figure(data=[go.Scatter3d( x=vectors[:, 0], y=vectors[:, 1], z=vectors[:, 2], mode='markers', marker=dict(size=2, color=colors, opacity=0.7), )]) fig.update_layout( scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z', aspectmode='manual', aspectratio=dict(x=2.2, y=2.2, z=1), # Make x-axis twice as long camera=dict( eye=dict(x=1.6, y=1.6, z=0.8) # Adjust camera position )), height=400, margin=dict(r=5, b=1, l=5, t=2) ) return fig def do_run(): new_opportunities = self.get_agent_framework().run() table = table_for(new_opportunities) return table def run_with_logging(initial_log_data): log_queue = queue.Queue() result_queue = queue.Queue() setup_logging(log_queue) def worker(): result = do_run() result_queue.put(result) thread = threading.Thread(target=worker) thread.start() for log_data, output, final_result in update_output(initial_log_data, log_queue, result_queue): yield log_data, output, final_result def do_select(selected_index: gr.SelectData): opportunities = self.get_agent_framework().memory row = selected_index.index[0] opportunity = opportunities[row] self.get_agent_framework().planner.messenger.alert(opportunity) with gr.Row(): gr.Markdown('
The Price is Right - Autonomous Agent Framework that hunts for deals
') with gr.Row(): gr.Markdown('
A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.
') with gr.Row(): opportunities_dataframe = gr.Dataframe( headers=["Deals found so far", "Price", "Estimate", "Discount", "URL"], wrap=True, column_widths=[6, 1, 1, 1, 3], row_count=10, col_count=5, max_height=400, ) with gr.Row(): with gr.Column(scale=1): logs = gr.HTML() with gr.Column(scale=1): plot = gr.Plot(value=get_plot(), show_label=False) ui.load(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe]) timer = gr.Timer(value=300, active=True) timer.tick(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe]) opportunities_dataframe.select(do_select) ui.launch(share=False, inbrowser=True) if __name__=="__main__": App().run()