Pierre918's picture
update add feature
868fa55 verified
raw
history blame
7.33 kB
import yfinance as yf
import pickle
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error
import gradio as gr
import pickle
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="numpy._core.fromnumeric")
# Charger et préparer les données
df = pd.read_csv("datatset/sphist.csv")
df['Date'] = pd.to_datetime(df["Date"])
df = df.sort_values(by='Date', ascending=True)
year_i = -1
day_i = -1
mean_d = np.nan
std_d = np.nan
std_d_v = np.nan
df['std 5'] = np.nan
df['mean 5'] = np.nan
mean_y = np.nan
std_y = np.nan
ratio = np.nan
df['mean 365'] = np.nan
df['std 365'] = np.nan
j = 0
for i, elt in df.iterrows():
if j==0:
j+=1
continue
if df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=365):
if year_i == -1:
year_i = 0
mean_y = np.mean(df.iloc[year_i:j-1]['Open'])
std_y = np.std(df.iloc[year_i:j-1]['Open'])
year_i += 1
df.iloc[j, df.columns.get_loc("std 365")] = std_y
df.iloc[j, df.columns.get_loc("mean 365")] = mean_y
if df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=5):
if day_i == -1:
day_i = 0
mean_d = np.mean(df.iloc[day_i:j-1]["Open"])
std_d = np.std(df.iloc[day_i:j-1]['Open'])
std_d_v = np.std(df.iloc[day_i:j-1]['Volume'])
day_i += 1
df.iloc[j, df.columns.get_loc("mean 5")] = mean_d
df.iloc[j, df.columns.get_loc("std 5")] = std_d
j += 1
# Ajouter des indicateurs utiles pour notre modèle de ML
df['5 Days Open'] = df['Open'].rolling(center=False, window=5).mean()
df['Year'] = df['Date'].apply(lambda x: x.year)
df['5 Days High'] = df['High'].rolling(center=False, window=5).mean()
df['5 Days Low'] = df['Low'].rolling(center=False, window=5).mean()
df['5 Days Volume'] = df['Volume'].rolling(center=False, window=5).mean()
# Déplacer la colonne d'un jour
df['5 Days Open'] = df['5 Days Open'].shift(1)
df = df.dropna(axis=0)
df = df.drop(df[df["Date"] < datetime(year=1951, month=1, day=3)].index, axis=0)
test = df[df['Date'] >= datetime(year=2013, month=1, day=1)]
train = df[df['Date'] < datetime(year=2013, month=1, day=1)]
# Entraîner le modèle
lr = LinearRegression().fit(train.drop(columns=["Open", 'High', 'Low', 'Volume', 'Adj Close', 'Close', 'Date']), train["Close"])
pred = lr.predict(test.drop(columns=["Open", 'High', 'Low', 'Volume', 'Adj Close', 'Close', 'Date']))
with open('linear_regression_model.pkl', 'wb') as file:
pickle.dump(lr, file)
# Calculer les erreurs
err = mean_absolute_error(test["Close"], pred)
errP = mean_absolute_percentage_error(test["Close"], pred)
# Créer le DataFrame pour le tableau
result_df = pd.DataFrame({'Predictions': pred, 'Actual Close': test['Close']})
# Fonction pour afficher l'erreur et le tableau
def display_results():
return str(err), str(errP), result_df
# Définir le symbole du S&P 500
def predire(date):
# Définir le symbole du S&P 500
symbole = "^GSPC"
selected_date=datetime.fromtimestamp(date)
year, month, day = selected_date.year, selected_date.month, selected_date.day
print(year,month,day)
# Définir la période
def get_datas(year,month,day):
date_debut = datetime(year=year-2, month=month, day=day)
date_fin = datetime.now()
# Télécharger les données
data = yf.download(symbole, start=date_debut, end=date_fin)
return data
# Sélectionner les colonnes souhaitées
df = get_datas(year,month,day)[['Open', 'High', 'Low', 'Close', 'Volume']]
df['Date'] = df.index
# Afficher les premières lignes
def add_features(df):
year_i = -1
day_i = -1
mean_d = np.nan
std_d = np.nan
df['std 5'] = np.nan
df['mean 5'] = np.nan
mean_y = np.nan
std_y = np.nan
df['mean 365'] = np.nan
df['std 365'] = np.nan
j = 0
for i, elt in df.iterrows():
if j==0:
j+=1
continue
if (df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=365)).iloc[0]:
if year_i == -1:
year_i = 0
mean_y = np.mean(df.iloc[year_i:j-1]['Open'])
std_y = np.std(df.iloc[year_i:j-1]['Open'])
year_i += 1
df.iloc[j, df.columns.get_loc("std 365")] = std_y
df.iloc[j, df.columns.get_loc("mean 365")] = mean_y
if (df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=5)).iloc[0]:
if day_i == -1:
day_i = 0
mean_d = np.mean(df.iloc[day_i:j-1]["Open"])
std_d = np.std(df.iloc[day_i:j-1]['Open'])
day_i += 1
df.iloc[j, df.columns.get_loc("mean 5")] = mean_d
df.iloc[j, df.columns.get_loc("std 5")] = std_d
j += 1
# Ajouter des indicateurs utiles pour notre modèle de ML
df['5 Days Open'] = df['Open'].rolling(center=False, window=5).mean()
df['Year'] = df['Date'].apply(lambda x: x.year)
df['5 Days High'] = df['High'].rolling(center=False, window=5).mean()
df['5 Days Low'] = df['Low'].rolling(center=False, window=5).mean()
df['5 Days Volume'] = df['Volume'].rolling(center=False, window=5).mean()
# Déplacer la colonne d'un jour
df['5 Days Open'] = df['5 Days Open'].shift(1)
df = df.dropna(axis=0)
print(df.tail())
return df
df= add_features(df)
test=df
test.iloc[-2:-1]['Close']
# Charger le modèle à partir du fichier pickle
with open('linear_regression_model.pkl', 'rb') as file:
lr = pickle.load(file)
a= lr.predict(df[df['Date'] == datetime(year=year,month=month,day=day)].drop(columns=["Open", 'High', 'Low', 'Volume', 'Close', 'Date']))[-1],float(df[df['Date'] == datetime(year=year,month=month,day=day)]['Close'][symbole])
return a
# Créer l'interface Gradio
with gr.Blocks() as demo:
gr.Markdown("# Linear Regression Model Results")
gr.Markdown("""This model was trained on S&P 500 stock price before 2013. The predictions below are taken betweek 2013 and 2015.
0.4% of average error was reached using LinearRegression.""")
with gr.Row():
with gr.Column():
error = gr.Textbox(label="Mean Absolute Error")
errorP = gr.Textbox(label="Mean Absolute Percentage Error")
table = gr.Dataframe(label="Predictions vs Actual Close Prices")
with gr.Row():
with gr.Column():
btn = gr.Button("Show Results")
gr.Markdown("## Dynamic prediction")
with gr.Row():
with gr.Column():
date_input = gr.DateTime(label="Select Date")
prediction = gr.Textbox(label="Prediction")
with gr.Column():
true_val = gr.Textbox("Real close price")
with gr.Row():
with gr.Column():
btn2 = gr.Button("Predict for your date")
btn.click(display_results, outputs=[error, errorP, table])
btn2.click(predire, inputs=date_input, outputs=[prediction, true_val])
# Lancer l'interface Gradio
demo.launch()