Spaces:
Sleeping
Sleeping
File size: 7,467 Bytes
868fa55 7457269 868fa55 7457269 868fa55 7457269 868fa55 5f9cb55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import yfinance as yf
import pickle
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error
import gradio as gr
import pickle
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="numpy._core.fromnumeric")
# Charger et préparer les données
df = pd.read_csv("datatset/sphist.csv")
df['Date'] = pd.to_datetime(df["Date"])
df = df.sort_values(by='Date', ascending=True)
year_i = -1
day_i = -1
mean_d = np.nan
std_d = np.nan
std_d_v = np.nan
df['std 5'] = np.nan
df['mean 5'] = np.nan
mean_y = np.nan
std_y = np.nan
ratio = np.nan
df['mean 365'] = np.nan
df['std 365'] = np.nan
j = 0
for i, elt in df.iterrows():
if j==0:
j+=1
continue
if df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=365):
if year_i == -1:
year_i = 0
mean_y = np.mean(df.iloc[year_i:j-1]['Open'])
std_y = np.std(df.iloc[year_i:j-1]['Open'])
year_i += 1
df.iloc[j, df.columns.get_loc("std 365")] = std_y
df.iloc[j, df.columns.get_loc("mean 365")] = mean_y
if df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=5):
if day_i == -1:
day_i = 0
mean_d = np.mean(df.iloc[day_i:j-1]["Open"])
std_d = np.std(df.iloc[day_i:j-1]['Open'])
std_d_v = np.std(df.iloc[day_i:j-1]['Volume'])
day_i += 1
df.iloc[j, df.columns.get_loc("mean 5")] = mean_d
df.iloc[j, df.columns.get_loc("std 5")] = std_d
j += 1
# Ajouter des indicateurs utiles pour notre modèle de ML
df['5 Days Open'] = df['Open'].rolling(center=False, window=5).mean()
df['Year'] = df['Date'].apply(lambda x: x.year)
df['5 Days High'] = df['High'].rolling(center=False, window=5).mean()
df['5 Days Low'] = df['Low'].rolling(center=False, window=5).mean()
df['5 Days Volume'] = df['Volume'].rolling(center=False, window=5).mean()
# Déplacer la colonne d'un jour
df['5 Days Open'] = df['5 Days Open'].shift(1)
df = df.dropna(axis=0)
df = df.drop(df[df["Date"] < datetime(year=1951, month=1, day=3)].index, axis=0)
test = df[df['Date'] >= datetime(year=2013, month=1, day=1)]
train = df[df['Date'] < datetime(year=2013, month=1, day=1)]
# Entraîner le modèle
lr = LinearRegression().fit(train.drop(columns=["Open", 'High', 'Low', 'Volume', 'Adj Close', 'Close', 'Date']), train["Close"])
pred = lr.predict(test.drop(columns=["Open", 'High', 'Low', 'Volume', 'Adj Close', 'Close', 'Date']))
with open('linear_regression_model.pkl', 'wb') as file:
pickle.dump(lr, file)
# Calculer les erreurs
err = mean_absolute_error(test["Close"], pred)
errP = mean_absolute_percentage_error(test["Close"], pred)
# Créer le DataFrame pour le tableau
result_df = pd.DataFrame({'Predictions': pred, 'Actual Close': test['Close']})
# Fonction pour afficher l'erreur et le tableau
def display_results():
return str(err), str(errP), result_df
# Définir le symbole du S&P 500
def predire(date):
# Définir le symbole du S&P 500
symbole = "^GSPC"
# selected_date=datetime.fromtimestamp(date)
day, month,year = int(date.split('/')[0]),int(date.split('/')[1]),int(date.split('/')[2])
print(year,month,day)
# Définir la période
def get_datas(year,month,day):
date_debut = datetime(year=year-2, month=month, day=day)
date_fin = datetime.now()
# Télécharger les données
data = yf.download(symbole, start=date_debut, end=date_fin)
return data
# Sélectionner les colonnes souhaitées
df = get_datas(year,month,day)[['Open', 'High', 'Low', 'Close', 'Volume']]
df['Date'] = df.index
# Afficher les premières lignes
def add_features(df):
year_i = -1
day_i = -1
mean_d = np.nan
std_d = np.nan
df['std 5'] = np.nan
df['mean 5'] = np.nan
mean_y = np.nan
std_y = np.nan
df['mean 365'] = np.nan
df['std 365'] = np.nan
j = 0
for i, elt in df.iterrows():
if j==0:
j+=1
continue
if (df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=365)).iloc[0]:
if year_i == -1:
year_i = 0
mean_y = np.mean(df.iloc[year_i:j-1]['Open'])
std_y = np.std(df.iloc[year_i:j-1]['Open'])
year_i += 1
df.iloc[j, df.columns.get_loc("std 365")] = std_y
df.iloc[j, df.columns.get_loc("mean 365")] = mean_y
if (df.iloc[j-1]['Date'] - df.iloc[0]['Date'] > timedelta(days=5)).iloc[0]:
if day_i == -1:
day_i = 0
mean_d = np.mean(df.iloc[day_i:j-1]["Open"])
std_d = np.std(df.iloc[day_i:j-1]['Open'])
day_i += 1
df.iloc[j, df.columns.get_loc("mean 5")] = mean_d
df.iloc[j, df.columns.get_loc("std 5")] = std_d
j += 1
# Ajouter des indicateurs utiles pour notre modèle de ML
df['5 Days Open'] = df['Open'].rolling(center=False, window=5).mean()
df['Year'] = df['Date'].apply(lambda x: x.year)
df['5 Days High'] = df['High'].rolling(center=False, window=5).mean()
df['5 Days Low'] = df['Low'].rolling(center=False, window=5).mean()
df['5 Days Volume'] = df['Volume'].rolling(center=False, window=5).mean()
# Déplacer la colonne d'un jour
df['5 Days Open'] = df['5 Days Open'].shift(1)
df = df.dropna(axis=0)
print(df.tail())
return df
df= add_features(df)
test=df
test.iloc[-2:-1]['Close']
# Charger le modèle à partir du fichier pickle
with open('linear_regression_model.pkl', 'rb') as file:
lr = pickle.load(file)
a= lr.predict(df[df['Date'] == datetime(year=year,month=month,day=day)].drop(columns=["Open", 'High', 'Low', 'Volume', 'Close', 'Date']))[-1],float(df[df['Date'] == datetime(year=year,month=month,day=day)]['Close'][symbole])
return a
# Créer l'interface Gradio
with gr.Blocks() as demo:
gr.Markdown("# Linear Regression Model Results")
gr.Markdown("""This model was trained on S&P 500 stock price before 2013. The predictions below are taken betweek 2013 and 2015.
0.4% of average error was reached using LinearRegression.""")
with gr.Row():
with gr.Column():
error = gr.Textbox(label="Mean Absolute Error")
errorP = gr.Textbox(label="Mean Absolute Percentage Error")
table = gr.Dataframe(label="Predictions vs Actual Close Prices")
with gr.Row():
with gr.Column():
btn = gr.Button("Show Results")
gr.Markdown("## Dynamic prediction")
gr.Markdown("Select a weekday before today and it will predict the close price of S&P 500 at your date.")
with gr.Row():
with gr.Column():
date_input = gr.Textbox(label="Select Date (DD/MM/YYYY)")
prediction = gr.Textbox(label="Prediction")
with gr.Column():
true_val = gr.Textbox("Real close price")
with gr.Row():
with gr.Column():
btn2 = gr.Button("Predict for your date")
btn.click(display_results, outputs=[error, errorP, table])
btn2.click(predire, inputs=date_input, outputs=[prediction, true_val])
# Lancer l'interface Gradio
demo.launch() |