Spaces:
Build error
Build error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import logging | |
| import torch.nn as nn | |
| from .utils import constant_init, kaiming_init, normal_init | |
| def conv3x3(in_planes, out_planes, dilation=1): | |
| """3x3 convolution with padding.""" | |
| return nn.Conv2d( | |
| in_planes, | |
| out_planes, | |
| kernel_size=3, | |
| padding=dilation, | |
| dilation=dilation) | |
| def make_vgg_layer(inplanes, | |
| planes, | |
| num_blocks, | |
| dilation=1, | |
| with_bn=False, | |
| ceil_mode=False): | |
| layers = [] | |
| for _ in range(num_blocks): | |
| layers.append(conv3x3(inplanes, planes, dilation)) | |
| if with_bn: | |
| layers.append(nn.BatchNorm2d(planes)) | |
| layers.append(nn.ReLU(inplace=True)) | |
| inplanes = planes | |
| layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode)) | |
| return layers | |
| class VGG(nn.Module): | |
| """VGG backbone. | |
| Args: | |
| depth (int): Depth of vgg, from {11, 13, 16, 19}. | |
| with_bn (bool): Use BatchNorm or not. | |
| num_classes (int): number of classes for classification. | |
| num_stages (int): VGG stages, normally 5. | |
| dilations (Sequence[int]): Dilation of each stage. | |
| out_indices (Sequence[int]): Output from which stages. | |
| frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
| not freezing any parameters. | |
| bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze | |
| running stats (mean and var). | |
| bn_frozen (bool): Whether to freeze weight and bias of BN layers. | |
| """ | |
| arch_settings = { | |
| 11: (1, 1, 2, 2, 2), | |
| 13: (2, 2, 2, 2, 2), | |
| 16: (2, 2, 3, 3, 3), | |
| 19: (2, 2, 4, 4, 4) | |
| } | |
| def __init__(self, | |
| depth, | |
| with_bn=False, | |
| num_classes=-1, | |
| num_stages=5, | |
| dilations=(1, 1, 1, 1, 1), | |
| out_indices=(0, 1, 2, 3, 4), | |
| frozen_stages=-1, | |
| bn_eval=True, | |
| bn_frozen=False, | |
| ceil_mode=False, | |
| with_last_pool=True): | |
| super(VGG, self).__init__() | |
| if depth not in self.arch_settings: | |
| raise KeyError(f'invalid depth {depth} for vgg') | |
| assert num_stages >= 1 and num_stages <= 5 | |
| stage_blocks = self.arch_settings[depth] | |
| self.stage_blocks = stage_blocks[:num_stages] | |
| assert len(dilations) == num_stages | |
| assert max(out_indices) <= num_stages | |
| self.num_classes = num_classes | |
| self.out_indices = out_indices | |
| self.frozen_stages = frozen_stages | |
| self.bn_eval = bn_eval | |
| self.bn_frozen = bn_frozen | |
| self.inplanes = 3 | |
| start_idx = 0 | |
| vgg_layers = [] | |
| self.range_sub_modules = [] | |
| for i, num_blocks in enumerate(self.stage_blocks): | |
| num_modules = num_blocks * (2 + with_bn) + 1 | |
| end_idx = start_idx + num_modules | |
| dilation = dilations[i] | |
| planes = 64 * 2**i if i < 4 else 512 | |
| vgg_layer = make_vgg_layer( | |
| self.inplanes, | |
| planes, | |
| num_blocks, | |
| dilation=dilation, | |
| with_bn=with_bn, | |
| ceil_mode=ceil_mode) | |
| vgg_layers.extend(vgg_layer) | |
| self.inplanes = planes | |
| self.range_sub_modules.append([start_idx, end_idx]) | |
| start_idx = end_idx | |
| if not with_last_pool: | |
| vgg_layers.pop(-1) | |
| self.range_sub_modules[-1][1] -= 1 | |
| self.module_name = 'features' | |
| self.add_module(self.module_name, nn.Sequential(*vgg_layers)) | |
| if self.num_classes > 0: | |
| self.classifier = nn.Sequential( | |
| nn.Linear(512 * 7 * 7, 4096), | |
| nn.ReLU(True), | |
| nn.Dropout(), | |
| nn.Linear(4096, 4096), | |
| nn.ReLU(True), | |
| nn.Dropout(), | |
| nn.Linear(4096, num_classes), | |
| ) | |
| def init_weights(self, pretrained=None): | |
| if isinstance(pretrained, str): | |
| logger = logging.getLogger() | |
| from ..runner import load_checkpoint | |
| load_checkpoint(self, pretrained, strict=False, logger=logger) | |
| elif pretrained is None: | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| kaiming_init(m) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| constant_init(m, 1) | |
| elif isinstance(m, nn.Linear): | |
| normal_init(m, std=0.01) | |
| else: | |
| raise TypeError('pretrained must be a str or None') | |
| def forward(self, x): | |
| outs = [] | |
| vgg_layers = getattr(self, self.module_name) | |
| for i in range(len(self.stage_blocks)): | |
| for j in range(*self.range_sub_modules[i]): | |
| vgg_layer = vgg_layers[j] | |
| x = vgg_layer(x) | |
| if i in self.out_indices: | |
| outs.append(x) | |
| if self.num_classes > 0: | |
| x = x.view(x.size(0), -1) | |
| x = self.classifier(x) | |
| outs.append(x) | |
| if len(outs) == 1: | |
| return outs[0] | |
| else: | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| super(VGG, self).train(mode) | |
| if self.bn_eval: | |
| for m in self.modules(): | |
| if isinstance(m, nn.BatchNorm2d): | |
| m.eval() | |
| if self.bn_frozen: | |
| for params in m.parameters(): | |
| params.requires_grad = False | |
| vgg_layers = getattr(self, self.module_name) | |
| if mode and self.frozen_stages >= 0: | |
| for i in range(self.frozen_stages): | |
| for j in range(*self.range_sub_modules[i]): | |
| mod = vgg_layers[j] | |
| mod.eval() | |
| for param in mod.parameters(): | |
| param.requires_grad = False | |