File size: 5,479 Bytes
067ea44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import pickle
import numpy as np
import pandas as pd
from explainer import get_shap_values
import shap
import matplotlib.pyplot as plt
import io
import os
from PIL import Image
from huggingface_hub import HfApi

# Load model
with open("model.pkl", "rb") as f:
    model = pickle.load(f)

# List of columns used during training
columns = ['Age', 'Saving accounts', 'Checking account', 'Credit amount', 'Duration',
    'Purpose_business', 'Purpose_car', 'Purpose_domestic appliances', 'Purpose_education', 'Purpose_furniture/equipment',
    'Purpose_radio/TV', 'Purpose_repairs', 'Purpose_vacation/others', 'Sex_female', 'Sex_male',
    'Housing_free', 'Housing_own', 'Housing_rent', 'Job_0', 'Job_1', 'Job_2', 'Job_3']

# Define prediction function
# All categorical mappings must match the encoding used during training
saving_account_map = {'little': 0, 'moderate': 1, 'quite rich': 2, 'rich': 3, 'No Savings': 0}
checking_account_map = {'little': 0, 'moderate': 1, 'rich': 2, 'No Checking': 0}

purpose_options = ['business', 'car', 'domestic appliances', 'education', 'furniture/equipment', 'radio/TV', 'repairs', 'vacation/others']
sex_options = ['female', 'male']
housing_options = ['free', 'own', 'rent']
job_options = [0, 1, 2, 3]

def to_scalar(val):
    # If val is a numpy array, get the first element; else, return as float
    if isinstance(val, np.ndarray):
        return float(val.flatten()[0])
    return float(val)

def predict_and_explain(age, saving_account, checking_account, credit_amount, duration, purpose, sex, housing, job):
    # Build a single-row DataFrame with all columns set to 0
    input_data = pd.DataFrame([[0]*len(columns)], columns=columns)
    input_data['Age'] = age
    input_data['Saving accounts'] = saving_account_map.get(saving_account, 0)
    input_data['Checking account'] = checking_account_map.get(checking_account, 0)
    input_data['Credit amount'] = credit_amount
    input_data['Duration'] = duration

    # One-hot encoding for purpose
    for p in purpose_options:
        input_data[f'Purpose_{p}'] = 1 if purpose == p else 0
    # One-hot encoding for sex
    for s in sex_options:
        input_data[f'Sex_{s}'] = 1 if sex == s else 0
    # One-hot encoding for housing
    for h in housing_options:
        input_data[f'Housing_{h}'] = 1 if housing == h else 0
    # One-hot encoding for job
    for j in job_options:
        input_data[f'Job_{j}'] = 1 if job == j else 0
 
    # Predict
    pred = model.predict(input_data)[0]
    prob = model.predict_proba(input_data)[0][int(pred)]
    risk = "Low Risk" if pred == 0 else "High Risk"
    prediction_text = f"{risk} (Confidence: {prob:.2f})"

    # Save flagged (high risk) input
    if risk == "High Risk":
        flagged_file = "flagged_inputs.csv"
        # Save the raw user input, not the one-hot encoded row
        user_row = {
            "Age": age,
            "Saving accounts": saving_account,
            "Checking account": checking_account,
            "Credit amount": credit_amount,
            "Duration": duration,
            "Purpose": purpose,
            "Sex": sex,
            "Housing": housing,
            "Job": job
        }
        df_flag = pd.DataFrame([user_row])
        if not os.path.exists(flagged_file):
            df_flag.to_csv(flagged_file, index=False)
        else:
            df_flag.to_csv(flagged_file, mode='a', header=False, index=False)

    # Get SHAP values
    shap_values = get_shap_values(model, input_data)
    # If get_shap_values returns (shap_values, explainer), use: shap_values, explainer = get_shap_values(input_data)

    # Get feature importances for this prediction
    shap_vals = shap_values[0] if hasattr(shap_values, '__getitem__') else shap_values
    feature_importance = sorted(
        zip(input_data.columns, shap_vals),
        key=lambda x: abs(x[1]),
        reverse=True
    )
    # Get top 5 important features
    top_features = feature_importance[:5]
    importance_text = "Top features for this prediction:\n" + "\n".join(
        [f"{feat}: {to_scalar(val):.3f}" for feat, val in top_features]
    )

    return prediction_text, importance_text

# Gradio UI
demo = gr.Interface(
    fn=predict_and_explain,
    inputs=[
        gr.Number(label="Age", info="Customer's Age"),
        gr.Radio(list(saving_account_map.keys()), label="Saving accounts", info="Saving accounts (Amount of Saving)"),
        gr.Radio(list(checking_account_map.keys()), label="Checking account", info="Checking account (in USD)"),
        gr.Number(label="Credit amount", info="Credit amount (numeric, in USD)"),
        gr.Number(label="Duration", info="Duration (numeric, in month)"),
        gr.Radio(purpose_options, label="Purpose", info="Purpose (car, furniture/equipment, radio/TV, domestic appliances, repairs, education, business, vacation/others)"),
        gr.Radio(sex_options, label="Sex", info="Sex (Male, Female)"),
        gr.Radio(housing_options, label="Housing", info="Housing (Own, Rent, or Free)"),
        gr.Radio(job_options, label="Job", info="Job (0 - Unskilled and non-resident, 1 - Unskilled and resident, 2 - Skilled, 3 - Highly skilled)")
    ],
    outputs=[
        gr.Text(label="Credit Risk Prediction"),
        gr.Text(label="Top Features for This Prediction")
    ],
    title="Credit Risk Predictor",
    description="Input applicant info to assess credit risk level and see SHAP explanation"
)
 

if __name__ == "__main__":
    demo.launch()