import streamlit as st import json from transformers import pipeline @st.cache_resource def load_model(model_name): return pipeline("text-generation", model=model_name) def main(): st.title("Prebid Module Generator") st.write("Enter a Prebid module, such as 'appnexusBidAdapter', and get a generated Prebid installed module output starting from that setting onward. Using '[' will generate common Prebid modules from the beginning. The model currently has a capped output of 1000 characters.") st.subheader("Intended Uses") st.write("This model is designed to assist publishers in understanding and exploring what modules most publishers use with their Prebid set-up. It can serve as a valuable reference to gain insights into common Prebid modules, best practices, and different approaches used by publishers across various domains. The model should be seen as a helpful tool to gain inspiration and understanding of common Prebid modules but not as a substitute for thorough testing and manual review of the final modules used.") st.write("To learn more about the default model, visit the [Prebid_Module_GPT2 model page](https://huggingface.co/PeterBrendan/Prebid_Module_GPT2). You can also refer to the [official Prebid Documentation on modules](https://docs.prebid.org/dev-docs/modules/) for more information.") st.write("*Note:* The model may take some time to generate the output. Please wait 30-60 seconds for it to generate.") # Default Prebid modules default_modules = ["[", "appnexusBidAdapter","ttdBidAdapter", "rubiconBidAdapter", "dfpAdServerVideo", "pubmaticBidAdapter", "gptPreAuction"] # Create a selectbox for default prompts default_module = st.selectbox("Choose a default Prebid module:", default_modules) # Create a text input field for custom prompt custom_module = st.text_input("Enter a custom Prebid module:", "") # Check if a default module is selected if default_module: user_input = default_module else: user_input = custom_module # Check if the user input is empty if user_input: # Select the model model_name = "PeterBrendan/Prebid_Module_GPT2" # Load the Hugging Face model generator = load_model(model_name) # Display 'Generating Output' message output_placeholder = st.empty() with output_placeholder: st.write("Generating Output...") # Generate text based on user input generated_text = generator(user_input, max_length=1000, num_return_sequences=1)[0]["generated_text"] # Clear 'Generating Output' message and display the generated text output_placeholder.empty() st.write("Generated Text:") try: parsed_json = json.loads(generated_text) beautified_json = json.dumps(parsed_json, indent=4) st.code(beautified_json, language="json") except json.JSONDecodeError: st.write(generated_text) # Run the app if __name__ == "__main__": main()