Spaces:
Runtime error
Runtime error
| import transformers | |
| import re | |
| from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM | |
| from vllm import LLM, SamplingParams | |
| import torch | |
| import gradio as gr | |
| import json | |
| import os | |
| import shutil | |
| import requests | |
| import chromadb | |
| import difflib | |
| import pandas as pd | |
| from chromadb.config import Settings | |
| from chromadb.utils import embedding_functions | |
| # Define the device | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_checkpoint = "PleIAs/Estienne" | |
| token_classifier = pipeline( | |
| "token-classification", model=editorial_model, aggregation_strategy="simple", device=device | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512) | |
| def split_text(text, max_tokens=500): | |
| # Split the text by newline characters | |
| parts = text.split("\n") | |
| chunks = [] | |
| current_chunk = "" | |
| for part in parts: | |
| # Add part to current chunk | |
| if current_chunk: | |
| temp_chunk = current_chunk + "\n" + part | |
| else: | |
| temp_chunk = part | |
| # Tokenize the temporary chunk | |
| num_tokens = len(tokenizer.tokenize(temp_chunk)) | |
| if num_tokens <= max_tokens: | |
| current_chunk = temp_chunk | |
| else: | |
| if current_chunk: | |
| chunks.append(current_chunk) | |
| current_chunk = part | |
| if current_chunk: | |
| chunks.append(current_chunk) | |
| # If no newlines were found and still exceeding max_tokens, split further | |
| if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens: | |
| long_text = chunks[0] | |
| chunks = [] | |
| while len(tokenizer.tokenize(long_text)) > max_tokens: | |
| split_point = len(long_text) // 2 | |
| while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]): | |
| split_point += 1 | |
| # Ensure split_point does not go out of range | |
| if split_point >= len(long_text): | |
| split_point = len(long_text) - 1 | |
| chunks.append(long_text[:split_point].strip()) | |
| long_text = long_text[split_point:].strip() | |
| if long_text: | |
| chunks.append(long_text) | |
| return chunks | |
| #Curtesy of claude | |
| def generate_html_diff(old_text, new_text): | |
| d = difflib.Differ() | |
| diff = list(d.compare(old_text.split(), new_text.split())) | |
| html_diff = [] | |
| for word in diff: | |
| if word.startswith(' '): | |
| html_diff.append(word[2:]) | |
| elif word.startswith('+ '): | |
| html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>') | |
| # We're not adding anything for words that start with '- ' | |
| return ' '.join(html_diff) | |
| # Class to encapsulate the Falcon chatbot | |
| class MistralChatBot: | |
| def __init__(self, system_prompt="Le dialogue suivant est une conversation"): | |
| self.system_prompt = system_prompt | |
| def predict(self, user_message): | |
| #We drop the newlines. | |
| editorial_text = re.sub("\n", " ¶ ", user_message) | |
| # Tokenize the prompt and check if it exceeds 500 tokens | |
| num_tokens = len(tokenizer.tokenize(prompt)) | |
| if num_tokens > 500: | |
| # Split the prompt into chunks | |
| batch_prompts = split_text(prompt, max_tokens=500) | |
| else: | |
| batch_prompts = [prompt] | |
| out = token_classifier(batch_prompts) | |
| out = "".join(out) | |
| generated_text = '<h2 style="text-align:center">Réponse</h3>\n<div class="generation">' + html_diff + "</div>" | |
| return generated_text | |
| # Create the Falcon chatbot instance | |
| mistral_bot = MistralChatBot() | |
| # Define the Gradio interface | |
| title = "Éditorialisation" | |
| description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)" | |
| examples = [ | |
| [ | |
| "Qui peut bénéficier de l'AIP?", # user_message | |
| 0.7 # temperature | |
| ] | |
| ] | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Température", | |
| value=0.2, # Default value | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Des valeurs plus élevées donne plus de créativité, mais aussi d'étrangeté", | |
| ), | |
| ] | |
| demo = gr.Blocks() | |
| with gr.Blocks(theme='JohnSmith9982/small_and_pretty', css=css) as demo: | |
| gr.HTML("""<h1 style="text-align:center">Correction d'OCR</h1>""") | |
| text_input = gr.Textbox(label="Votre texte.", type="text", lines=1) | |
| text_button = gr.Button("Identifier les structures éditoriales") | |
| text_output = gr.HTML(label="Le texte corrigé") | |
| text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output]) | |
| if __name__ == "__main__": | |
| demo.queue().launch() |