Pavankumar91 commited on
Commit
dc10301
·
verified ·
1 Parent(s): 7b34071

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -9,10 +9,8 @@ from sklearn.feature_extraction.text import TfidfVectorizer
9
  # Initialize Flask
10
  app = Flask(__name__)
11
 
12
- # Dummy Data for testing - replace this with actual data loading in production
13
  df = pd.read_csv("ecommerce_dataset_updated.csv")
14
-
15
- # Clean and process data as in your previous code
16
  df['Category'] = df['Category'].str.replace('&', ' and ')
17
  df['Purchase_Date'] = pd.to_datetime(df['Purchase_Date'], format='%d-%m-%Y')
18
  df.dropna(inplace=True)
@@ -30,13 +28,13 @@ interaction_matrix = df.pivot_table(
30
  user_similarity = cosine_similarity(interaction_matrix)
31
  user_similarity_df = pd.DataFrame(user_similarity, index=interaction_matrix.index, columns=interaction_matrix.index)
32
 
33
- # TF-IDF on categories
34
  tfidf = TfidfVectorizer(stop_words='english')
35
  tfidf_matrix = tfidf.fit_transform(df['Category'])
36
  product_similarity = cosine_similarity(tfidf_matrix, tfidf_matrix)
37
  product_similarity_df = pd.DataFrame(product_similarity, index=df['Product_ID'], columns=df['Product_ID'])
38
 
39
- # Collaborative Filtering Recommendation Function
40
  def recommend_collaborative(user_id, top_n=5):
41
  user_idx = interaction_matrix.index.get_loc(user_id)
42
  sim_scores = user_similarity_df.iloc[user_idx]
@@ -45,7 +43,7 @@ def recommend_collaborative(user_id, top_n=5):
45
  recommended_products = interaction_matrix.columns[product_indices]
46
  return recommended_products.tolist()
47
 
48
- # Content-Based Recommendation Function
49
  def recommend_content_based(product_id, top_n=5):
50
  sim_scores = product_similarity_df.loc[product_id].sort_values(ascending=False)
51
  recommended_products = sim_scores.index[1:top_n+1] # Exclude the product itself
 
9
  # Initialize Flask
10
  app = Flask(__name__)
11
 
12
+ # Dataset is loaded for preprocessing
13
  df = pd.read_csv("ecommerce_dataset_updated.csv")
 
 
14
  df['Category'] = df['Category'].str.replace('&', ' and ')
15
  df['Purchase_Date'] = pd.to_datetime(df['Purchase_Date'], format='%d-%m-%Y')
16
  df.dropna(inplace=True)
 
28
  user_similarity = cosine_similarity(interaction_matrix)
29
  user_similarity_df = pd.DataFrame(user_similarity, index=interaction_matrix.index, columns=interaction_matrix.index)
30
 
31
+ # TF-IDF vectors on categories
32
  tfidf = TfidfVectorizer(stop_words='english')
33
  tfidf_matrix = tfidf.fit_transform(df['Category'])
34
  product_similarity = cosine_similarity(tfidf_matrix, tfidf_matrix)
35
  product_similarity_df = pd.DataFrame(product_similarity, index=df['Product_ID'], columns=df['Product_ID'])
36
 
37
+ # Collaborative Filtering Recommendation Function(Method-1)
38
  def recommend_collaborative(user_id, top_n=5):
39
  user_idx = interaction_matrix.index.get_loc(user_id)
40
  sim_scores = user_similarity_df.iloc[user_idx]
 
43
  recommended_products = interaction_matrix.columns[product_indices]
44
  return recommended_products.tolist()
45
 
46
+ # Content-Based Recommendation Function(Method-2)
47
  def recommend_content_based(product_id, top_n=5):
48
  sim_scores = product_similarity_df.loc[product_id].sort_values(ascending=False)
49
  recommended_products = sim_scores.index[1:top_n+1] # Exclude the product itself