Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gitattributes +7 -0
- .github/workflows/update_space.yml +28 -0
- .gitignore +52 -0
- README.md +165 -12
- app.py +533 -0
- deep_sort_integration.py +73 -0
- examples/cig.mp4 +3 -0
- examples/clip-cig.gif +3 -0
- examples/clip-conflag.gif +3 -0
- examples/clip-gu.gif +3 -0
- examples/conf.mp4 +3 -0
- examples/gun.mp4 +3 -0
- examples/homealone.mp4 +3 -0
- main.py +1236 -0
- packages.txt +2 -0
- persistence.py +39 -0
- requirements.txt +26 -0
- video_visualization.py +330 -0
- visualization.py +98 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/cig.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/clip-cig.gif filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/clip-conflag.gif filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/clip-gu.gif filter=lfs diff=lfs merge=lfs -text
|
40 |
+
examples/conf.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
examples/gun.mp4 filter=lfs diff=lfs merge=lfs -text
|
42 |
+
examples/homealone.mp4 filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
.gitignore
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
*.dll
|
23 |
+
|
24 |
+
# Virtual Environment
|
25 |
+
venv/
|
26 |
+
env/
|
27 |
+
ENV/
|
28 |
+
.venv/
|
29 |
+
|
30 |
+
# IDE
|
31 |
+
.idea/
|
32 |
+
.vscode/
|
33 |
+
*.swp
|
34 |
+
*.swo
|
35 |
+
|
36 |
+
# Project specific
|
37 |
+
inputs/*
|
38 |
+
outputs/*
|
39 |
+
!inputs/.gitkeep
|
40 |
+
!outputs/.gitkeep
|
41 |
+
inputs/
|
42 |
+
outputs/
|
43 |
+
|
44 |
+
# Model files
|
45 |
+
*.pth
|
46 |
+
*.onnx
|
47 |
+
*.pt
|
48 |
+
|
49 |
+
# Logs
|
50 |
+
*.log
|
51 |
+
|
52 |
+
certificate.pem
|
README.md
CHANGED
@@ -1,12 +1,165 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: promptable-content-moderation
|
3 |
+
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 5.16.1
|
6 |
+
---
|
7 |
+
# Promptable Content Moderation with Moondream
|
8 |
+
|
9 |
+
Welcome to the future of content moderation with Moondream 2B, a powerful and lightweight vision-language model that enables detection and moderation of video content using natural language prompts.
|
10 |
+
|
11 |
+
[Try it now.](https://huggingface.co/spaces/moondream/content-moderation)
|
12 |
+
|
13 |
+
## Features
|
14 |
+
|
15 |
+
- Content moderation through natural language prompts
|
16 |
+
- Multiple visualization styles
|
17 |
+
- Intelligent scene detection and tracking:
|
18 |
+
- DeepSORT tracking with scene-aware reset
|
19 |
+
- Persistent moderation across frames
|
20 |
+
- Smart tracker reset at scene boundaries
|
21 |
+
- Optional grid-based detection for improved accuracy on complex scenes
|
22 |
+
- Frame-by-frame processing with IoU-based merging
|
23 |
+
- Web-compatible output format
|
24 |
+
- Test mode (process only first X seconds)
|
25 |
+
- Advanced moderation analysis with multiple visualization plots
|
26 |
+
|
27 |
+
## Examples
|
28 |
+
|
29 |
+
| Example Outputs |
|
30 |
+
|------|
|
31 |
+
|  |
|
32 |
+
|  |
|
33 |
+
|  |
|
34 |
+
|
35 |
+
## Requirements
|
36 |
+
|
37 |
+
### Python Dependencies
|
38 |
+
|
39 |
+
For Windows users, before installing other requirements, first install PyTorch with CUDA support:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
pip install torch==2.5.1+cu121 torchvision==0.20.1+cu121 --index-url https://download.pytorch.org/whl/cu121
|
43 |
+
```
|
44 |
+
|
45 |
+
Then install the remaining dependencies:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
pip install -r requirements.txt
|
49 |
+
```
|
50 |
+
|
51 |
+
### System Requirements
|
52 |
+
|
53 |
+
- FFmpeg (required for video processing)
|
54 |
+
- libvips (required for image processing)
|
55 |
+
|
56 |
+
Installation by platform:
|
57 |
+
|
58 |
+
- Ubuntu/Debian: `sudo apt-get install ffmpeg libvips`
|
59 |
+
- macOS: `brew install ffmpeg libvips`
|
60 |
+
- Windows:
|
61 |
+
- Download FFmpeg from [ffmpeg.org](https://ffmpeg.org/download.html)
|
62 |
+
- Follow [libvips Windows installation guide](https://docs.moondream.ai/quick-start)
|
63 |
+
|
64 |
+
## Installation
|
65 |
+
|
66 |
+
1. Clone this repository and create a new virtual environment:
|
67 |
+
|
68 |
+
```bash
|
69 |
+
git clone https://github.com/vikhyat/moondream/blob/main/recipes/promptable-video-redaction
|
70 |
+
python -m venv .venv
|
71 |
+
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
72 |
+
```
|
73 |
+
|
74 |
+
2. Install Python dependencies:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
pip install -r requirements.txt
|
78 |
+
```
|
79 |
+
|
80 |
+
3. Install ffmpeg and libvips:
|
81 |
+
- On Ubuntu/Debian: `sudo apt-get install ffmpeg libvips`
|
82 |
+
- On macOS: `brew install ffmpeg`
|
83 |
+
- On Windows: Download from [ffmpeg.org](https://ffmpeg.org/download.html)
|
84 |
+
|
85 |
+
> Downloading libvips for Windows requires some additional steps, see [here](https://docs.moondream.ai/quick-start)
|
86 |
+
|
87 |
+
## Usage
|
88 |
+
|
89 |
+
The easiest way to use this tool is through its web interface, which provides a user-friendly experience for video content moderation.
|
90 |
+
|
91 |
+
### Web Interface
|
92 |
+
|
93 |
+
1. Start the web interface:
|
94 |
+
|
95 |
+
```bash
|
96 |
+
python app.py
|
97 |
+
```
|
98 |
+
|
99 |
+
2. Open the provided URL in your browser (typically <http://localhost:7860>)
|
100 |
+
|
101 |
+
3. Use the interface to:
|
102 |
+
- Upload your video file
|
103 |
+
- Specify content to moderate (e.g., "face", "cigarette", "gun")
|
104 |
+
- Choose redaction style (default: obfuscated-pixel)
|
105 |
+
- OPTIONAL: Configure advanced settings
|
106 |
+
- Processing speed/quality
|
107 |
+
- Grid size for detection
|
108 |
+
- Test mode for quick validation (default: on, 3 seconds)
|
109 |
+
- Process the video and download results
|
110 |
+
- Analyze detection patterns with visualization tools
|
111 |
+
|
112 |
+
## Output Files
|
113 |
+
|
114 |
+
The tool generates two types of output files in the `outputs` directory:
|
115 |
+
|
116 |
+
1. Processed Videos:
|
117 |
+
- Format: `[style]_[content_type]_[original_filename].mp4`
|
118 |
+
- Example: `censor_inappropriate_video.mp4`
|
119 |
+
|
120 |
+
2. Detection Data:
|
121 |
+
- Format: `[style]_[content_type]_[original_filename]_detections.json`
|
122 |
+
- Contains frame-by-frame detection information
|
123 |
+
- Used for visualization and analysis
|
124 |
+
|
125 |
+
## Technical Details
|
126 |
+
|
127 |
+
### Scene Detection and Tracking
|
128 |
+
|
129 |
+
The tool uses advanced scene detection and object tracking:
|
130 |
+
|
131 |
+
1. Scene Detection:
|
132 |
+
- Powered by PySceneDetect's ContentDetector
|
133 |
+
- Automatically identifies scene changes in videos
|
134 |
+
- Configurable detection threshold (default: 30.0)
|
135 |
+
- Helps maintain tracking accuracy across scene boundaries
|
136 |
+
|
137 |
+
2. Object Tracking:
|
138 |
+
- DeepSORT tracking for consistent object identification
|
139 |
+
- Automatic tracker reset at scene changes
|
140 |
+
- Maintains object identity within scenes
|
141 |
+
- Prevents tracking errors across scene boundaries
|
142 |
+
|
143 |
+
3. Integration Benefits:
|
144 |
+
- More accurate object tracking
|
145 |
+
- Better handling of scene transitions
|
146 |
+
- Reduced false positives in tracking
|
147 |
+
- Improved tracking consistency
|
148 |
+
|
149 |
+
## Best Practices
|
150 |
+
|
151 |
+
- Use test mode for initial configuration
|
152 |
+
- Enable grid-based detection for complex scenes
|
153 |
+
- Choose appropriate redaction style based on content type:
|
154 |
+
- Censor: Complete content blocking
|
155 |
+
- Blur styles: Less intrusive moderation
|
156 |
+
- Bounding Box: Content review and analysis
|
157 |
+
- Monitor system resources during processing
|
158 |
+
- Use appropriate processing quality settings based on your needs
|
159 |
+
|
160 |
+
## Notes
|
161 |
+
|
162 |
+
- Processing time depends on video length, resolution, GPU availability, and chosen settings
|
163 |
+
- GPU is strongly recommended for faster processing
|
164 |
+
- Grid-based detection increases accuracy but requires more processing time (each grid cell is processed independently)
|
165 |
+
- Test mode processes only first X seconds (default: 3 seconds) for quick validation
|
app.py
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
from main import load_moondream, process_video, load_sam_model
|
5 |
+
import shutil
|
6 |
+
import torch
|
7 |
+
from visualization import visualize_detections
|
8 |
+
from persistence import load_detection_data
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import io
|
11 |
+
from PIL import Image
|
12 |
+
import pandas as pd
|
13 |
+
from video_visualization import create_video_visualization
|
14 |
+
|
15 |
+
# import spaces
|
16 |
+
import spaces
|
17 |
+
# Get absolute path to workspace root
|
18 |
+
WORKSPACE_ROOT = os.path.dirname(os.path.abspath(__file__))
|
19 |
+
|
20 |
+
# Check CUDA availability
|
21 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
22 |
+
# We want to get True
|
23 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
24 |
+
# GPU Name
|
25 |
+
|
26 |
+
# Initialize Moondream model globally for reuse (will be loaded on first use)
|
27 |
+
model, tokenizer = None, None
|
28 |
+
|
29 |
+
# Uncomment for Hugging Face Spaces
|
30 |
+
@spaces.GPU(duration=120)
|
31 |
+
def process_video_file(
|
32 |
+
video_file, target_object, box_style, ffmpeg_preset, grid_rows, grid_cols, test_mode, test_duration
|
33 |
+
):
|
34 |
+
"""Process a video file through the Gradio interface."""
|
35 |
+
try:
|
36 |
+
if not video_file:
|
37 |
+
raise gr.Error("Please upload a video file")
|
38 |
+
|
39 |
+
# Load models if not already loaded
|
40 |
+
global model, tokenizer
|
41 |
+
if model is None or tokenizer is None:
|
42 |
+
model, tokenizer = load_moondream()
|
43 |
+
|
44 |
+
# Ensure input/output directories exist using absolute paths
|
45 |
+
inputs_dir = os.path.join(WORKSPACE_ROOT, "inputs")
|
46 |
+
outputs_dir = os.path.join(WORKSPACE_ROOT, "outputs")
|
47 |
+
os.makedirs(inputs_dir, exist_ok=True)
|
48 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
49 |
+
|
50 |
+
# Copy uploaded video to inputs directory
|
51 |
+
video_filename = f"input_{os.path.basename(video_file)}"
|
52 |
+
input_video_path = os.path.join(inputs_dir, video_filename)
|
53 |
+
shutil.copy2(video_file, input_video_path)
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Process the video
|
57 |
+
output_path = process_video(
|
58 |
+
input_video_path,
|
59 |
+
target_object,
|
60 |
+
test_mode=test_mode,
|
61 |
+
test_duration=test_duration,
|
62 |
+
ffmpeg_preset=ffmpeg_preset,
|
63 |
+
grid_rows=grid_rows,
|
64 |
+
grid_cols=grid_cols,
|
65 |
+
box_style=box_style,
|
66 |
+
)
|
67 |
+
|
68 |
+
# Get the corresponding JSON path
|
69 |
+
base_name = os.path.splitext(os.path.basename(video_filename))[0]
|
70 |
+
json_path = os.path.join(outputs_dir, f"{box_style}_{target_object}_{base_name}_detections.json")
|
71 |
+
|
72 |
+
# Verify output exists and is readable
|
73 |
+
if not output_path or not os.path.exists(output_path):
|
74 |
+
print(f"Warning: Output path {output_path} does not exist")
|
75 |
+
# Try to find the output based on expected naming convention
|
76 |
+
expected_output = os.path.join(
|
77 |
+
outputs_dir, f"{box_style}_{target_object}_{video_filename}"
|
78 |
+
)
|
79 |
+
if os.path.exists(expected_output):
|
80 |
+
output_path = expected_output
|
81 |
+
else:
|
82 |
+
# Try searching in outputs directory for any matching file
|
83 |
+
matching_files = [
|
84 |
+
f
|
85 |
+
for f in os.listdir(outputs_dir)
|
86 |
+
if f.startswith(f"{box_style}_{target_object}_")
|
87 |
+
]
|
88 |
+
if matching_files:
|
89 |
+
output_path = os.path.join(outputs_dir, matching_files[0])
|
90 |
+
else:
|
91 |
+
raise gr.Error("Failed to locate output video")
|
92 |
+
|
93 |
+
# Convert output path to absolute path if it isn't already
|
94 |
+
if not os.path.isabs(output_path):
|
95 |
+
output_path = os.path.join(WORKSPACE_ROOT, output_path)
|
96 |
+
|
97 |
+
print(f"Returning output path: {output_path}")
|
98 |
+
return output_path, json_path
|
99 |
+
|
100 |
+
finally:
|
101 |
+
# Clean up input file
|
102 |
+
try:
|
103 |
+
if os.path.exists(input_video_path):
|
104 |
+
os.remove(input_video_path)
|
105 |
+
except:
|
106 |
+
pass
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error in process_video_file: {str(e)}")
|
110 |
+
raise gr.Error(f"Error processing video: {str(e)}")
|
111 |
+
|
112 |
+
def create_visualization_plots(json_path):
|
113 |
+
"""Create visualization plots and return them as images."""
|
114 |
+
try:
|
115 |
+
# Load the data
|
116 |
+
data = load_detection_data(json_path)
|
117 |
+
if not data:
|
118 |
+
return None, None, None, None, None, None, None, None, "No data found"
|
119 |
+
|
120 |
+
# Convert to DataFrame
|
121 |
+
rows = []
|
122 |
+
for frame_data in data["frame_detections"]:
|
123 |
+
frame = frame_data["frame"]
|
124 |
+
timestamp = frame_data["timestamp"]
|
125 |
+
for obj in frame_data["objects"]:
|
126 |
+
rows.append({
|
127 |
+
"frame": frame,
|
128 |
+
"timestamp": timestamp,
|
129 |
+
"keyword": obj["keyword"],
|
130 |
+
"x1": obj["bbox"][0],
|
131 |
+
"y1": obj["bbox"][1],
|
132 |
+
"x2": obj["bbox"][2],
|
133 |
+
"y2": obj["bbox"][3],
|
134 |
+
"area": (obj["bbox"][2] - obj["bbox"][0]) * (obj["bbox"][3] - obj["bbox"][1]),
|
135 |
+
"center_x": (obj["bbox"][0] + obj["bbox"][2]) / 2,
|
136 |
+
"center_y": (obj["bbox"][1] + obj["bbox"][3]) / 2
|
137 |
+
})
|
138 |
+
|
139 |
+
if not rows:
|
140 |
+
return None, None, None, None, None, None, None, None, "No detections found in the data"
|
141 |
+
|
142 |
+
df = pd.DataFrame(rows)
|
143 |
+
plots = []
|
144 |
+
|
145 |
+
# Create each plot and convert to image
|
146 |
+
for plot_num in range(8): # Increased to 8 plots
|
147 |
+
plt.figure(figsize=(8, 6))
|
148 |
+
|
149 |
+
if plot_num == 0:
|
150 |
+
# Plot 1: Number of detections per frame (Original)
|
151 |
+
detections_per_frame = df.groupby("frame").size()
|
152 |
+
plt.plot(detections_per_frame.index, detections_per_frame.values)
|
153 |
+
plt.xlabel("Frame")
|
154 |
+
plt.ylabel("Number of Detections")
|
155 |
+
plt.title("Detections Per Frame")
|
156 |
+
|
157 |
+
elif plot_num == 1:
|
158 |
+
# Plot 2: Distribution of detection areas (Original)
|
159 |
+
df["area"].hist(bins=30)
|
160 |
+
plt.xlabel("Detection Area (normalized)")
|
161 |
+
plt.ylabel("Count")
|
162 |
+
plt.title("Distribution of Detection Areas")
|
163 |
+
|
164 |
+
elif plot_num == 2:
|
165 |
+
# Plot 3: Average detection area over time (Original)
|
166 |
+
avg_area = df.groupby("frame")["area"].mean()
|
167 |
+
plt.plot(avg_area.index, avg_area.values)
|
168 |
+
plt.xlabel("Frame")
|
169 |
+
plt.ylabel("Average Detection Area")
|
170 |
+
plt.title("Average Detection Area Over Time")
|
171 |
+
|
172 |
+
elif plot_num == 3:
|
173 |
+
# Plot 4: Heatmap of detection centers (Original)
|
174 |
+
plt.hist2d(df["center_x"], df["center_y"], bins=30)
|
175 |
+
plt.colorbar()
|
176 |
+
plt.xlabel("X Position")
|
177 |
+
plt.ylabel("Y Position")
|
178 |
+
plt.title("Detection Center Heatmap")
|
179 |
+
|
180 |
+
elif plot_num == 4:
|
181 |
+
# Plot 5: Time-based Detection Density
|
182 |
+
# Shows when in the video most detections occur
|
183 |
+
df["time_bucket"] = pd.qcut(df["timestamp"], q=20, labels=False)
|
184 |
+
time_density = df.groupby("time_bucket").size()
|
185 |
+
plt.bar(time_density.index, time_density.values)
|
186 |
+
plt.xlabel("Video Timeline (20 segments)")
|
187 |
+
plt.ylabel("Number of Detections")
|
188 |
+
plt.title("Detection Density Over Video Duration")
|
189 |
+
|
190 |
+
elif plot_num == 5:
|
191 |
+
# Plot 6: Screen Region Analysis
|
192 |
+
# Divide screen into 3x3 grid and show detection counts
|
193 |
+
try:
|
194 |
+
df["grid_x"] = pd.qcut(df["center_x"], q=3, labels=["Left", "Center", "Right"], duplicates='drop')
|
195 |
+
df["grid_y"] = pd.qcut(df["center_y"], q=3, labels=["Top", "Middle", "Bottom"], duplicates='drop')
|
196 |
+
region_counts = df.groupby(["grid_y", "grid_x"]).size().unstack(fill_value=0)
|
197 |
+
plt.imshow(region_counts, cmap="YlOrRd")
|
198 |
+
plt.colorbar(label="Detection Count")
|
199 |
+
for i in range(3):
|
200 |
+
for j in range(3):
|
201 |
+
plt.text(j, i, region_counts.iloc[i, j], ha="center", va="center")
|
202 |
+
plt.xticks(range(3), ["Left", "Center", "Right"])
|
203 |
+
plt.yticks(range(3), ["Top", "Middle", "Bottom"])
|
204 |
+
plt.title("Screen Region Analysis")
|
205 |
+
except Exception as e:
|
206 |
+
plt.text(0.5, 0.5, "Insufficient variation in detection positions",
|
207 |
+
ha='center', va='center')
|
208 |
+
plt.title("Screen Region Analysis (Not Available)")
|
209 |
+
|
210 |
+
elif plot_num == 6:
|
211 |
+
# Plot 7: Detection Size Categories
|
212 |
+
# Categorize detections by size for content moderation
|
213 |
+
try:
|
214 |
+
size_labels = [
|
215 |
+
"Small (likely far/background)",
|
216 |
+
"Medium-small",
|
217 |
+
"Medium-large",
|
218 |
+
"Large (likely foreground/close)"
|
219 |
+
]
|
220 |
+
|
221 |
+
# Handle cases with limited unique values
|
222 |
+
unique_areas = df["area"].nunique()
|
223 |
+
if unique_areas >= 4:
|
224 |
+
df["size_category"] = pd.qcut(df["area"], q=4, labels=size_labels, duplicates='drop')
|
225 |
+
else:
|
226 |
+
# Alternative binning for limited unique values
|
227 |
+
df["size_category"] = pd.cut(df["area"],
|
228 |
+
bins=unique_areas,
|
229 |
+
labels=size_labels[:unique_areas])
|
230 |
+
|
231 |
+
size_dist = df["size_category"].value_counts()
|
232 |
+
plt.pie(size_dist.values, labels=size_dist.index, autopct="%1.1f%%")
|
233 |
+
plt.title("Detection Size Distribution")
|
234 |
+
except Exception as e:
|
235 |
+
plt.text(0.5, 0.5, "Insufficient variation in detection sizes",
|
236 |
+
ha='center', va='center')
|
237 |
+
plt.title("Detection Size Distribution (Not Available)")
|
238 |
+
|
239 |
+
elif plot_num == 7:
|
240 |
+
# Plot 8: Temporal Pattern Analysis
|
241 |
+
# Show patterns of when detections occur in sequence
|
242 |
+
try:
|
243 |
+
detection_gaps = df.sort_values("frame")["frame"].diff()
|
244 |
+
if len(detection_gaps.dropna().unique()) > 1:
|
245 |
+
plt.hist(detection_gaps.dropna(), bins=min(30, len(detection_gaps.dropna().unique())),
|
246 |
+
edgecolor="black")
|
247 |
+
plt.xlabel("Frames Between Detections")
|
248 |
+
plt.ylabel("Frequency")
|
249 |
+
plt.title("Detection Temporal Pattern Analysis")
|
250 |
+
else:
|
251 |
+
plt.text(0.5, 0.5, "Uniform detection intervals", ha='center', va='center')
|
252 |
+
plt.title("Temporal Pattern Analysis (Uniform)")
|
253 |
+
except Exception as e:
|
254 |
+
plt.text(0.5, 0.5, "Insufficient temporal data", ha='center', va='center')
|
255 |
+
plt.title("Temporal Pattern Analysis (Not Available)")
|
256 |
+
|
257 |
+
# Save plot to bytes
|
258 |
+
buf = io.BytesIO()
|
259 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
260 |
+
buf.seek(0)
|
261 |
+
plots.append(Image.open(buf))
|
262 |
+
plt.close()
|
263 |
+
|
264 |
+
# Enhanced summary text
|
265 |
+
summary = f"""Summary Statistics:
|
266 |
+
Total frames analyzed: {len(data['frame_detections'])}
|
267 |
+
Total detections: {len(df)}
|
268 |
+
Average detections per frame: {len(df) / len(data['frame_detections']):.2f}
|
269 |
+
|
270 |
+
Detection Patterns:
|
271 |
+
- Peak detection count: {df.groupby('frame').size().max()} (in a single frame)
|
272 |
+
- Most common screen region: {df.groupby(['grid_y', 'grid_x']).size().idxmax()}
|
273 |
+
- Average detection size: {df['area'].mean():.3f}
|
274 |
+
- Median frames between detections: {detection_gaps.median():.1f}
|
275 |
+
|
276 |
+
Video metadata:
|
277 |
+
"""
|
278 |
+
for key, value in data["video_metadata"].items():
|
279 |
+
summary += f"{key}: {value}\n"
|
280 |
+
|
281 |
+
return plots[0], plots[1], plots[2], plots[3], plots[4], plots[5], plots[6], plots[7], summary
|
282 |
+
|
283 |
+
except Exception as e:
|
284 |
+
print(f"Error creating visualization: {str(e)}")
|
285 |
+
import traceback
|
286 |
+
traceback.print_exc()
|
287 |
+
return None, None, None, None, None, None, None, None, f"Error creating visualization: {str(e)}"
|
288 |
+
|
289 |
+
# Create the Gradio interface
|
290 |
+
with gr.Blocks(title="Promptable Content Moderation") as app:
|
291 |
+
with gr.Tabs():
|
292 |
+
with gr.Tab("Process Video"):
|
293 |
+
gr.Markdown("# Promptable Content Moderation with Moondream")
|
294 |
+
gr.Markdown(
|
295 |
+
"""
|
296 |
+
Powered by [Moondream 2B](https://github.com/vikhyat/moondream).
|
297 |
+
|
298 |
+
Upload a video and specify what to moderate. The app will process each frame and moderate any visual content that matches the prompt. For help, join the [Moondream Discord](https://discord.com/invite/tRUdpjDQfH).
|
299 |
+
"""
|
300 |
+
)
|
301 |
+
|
302 |
+
with gr.Row():
|
303 |
+
with gr.Column():
|
304 |
+
# Input components
|
305 |
+
video_input = gr.Video(label="Upload Video")
|
306 |
+
|
307 |
+
detect_input = gr.Textbox(
|
308 |
+
label="What to Moderate",
|
309 |
+
placeholder="e.g. face, cigarette, gun, etc.",
|
310 |
+
value="face",
|
311 |
+
info="Moondream can moderate anything that you can describe in natural language",
|
312 |
+
)
|
313 |
+
|
314 |
+
gr.Examples(
|
315 |
+
examples=[
|
316 |
+
["examples/cig.mp4", "cigarette"],
|
317 |
+
["examples/gun.mp4", "gun"],
|
318 |
+
["examples/homealone.mp4", "face"],
|
319 |
+
["examples/conf.mp4", "confederate flag"],
|
320 |
+
],
|
321 |
+
inputs=[video_input, detect_input],
|
322 |
+
label="Try these examples",
|
323 |
+
)
|
324 |
+
|
325 |
+
process_btn = gr.Button("Process Video", variant="primary")
|
326 |
+
|
327 |
+
with gr.Accordion("Advanced Settings", open=False):
|
328 |
+
box_style_input = gr.Radio(
|
329 |
+
choices=["censor", "bounding-box", "hitmarker", "sam", "sam-fast", "fuzzy-blur", "pixelated-blur", "intense-pixelated-blur", "obfuscated-pixel"],
|
330 |
+
value="obfuscated-pixel",
|
331 |
+
label="Visualization Style",
|
332 |
+
info="Choose how to display moderations: censor (black boxes), bounding-box (red boxes with labels), hitmarker (COD-style markers), sam (precise segmentation), sam-fast (faster but less precise segmentation), fuzzy-blur (Gaussian blur), pixelated-blur (pixelated with blur), obfuscated-pixel (advanced pixelation with neighborhood averaging)",
|
333 |
+
)
|
334 |
+
preset_input = gr.Dropdown(
|
335 |
+
choices=[
|
336 |
+
"ultrafast",
|
337 |
+
"superfast",
|
338 |
+
"veryfast",
|
339 |
+
"faster",
|
340 |
+
"fast",
|
341 |
+
"medium",
|
342 |
+
"slow",
|
343 |
+
"slower",
|
344 |
+
"veryslow",
|
345 |
+
],
|
346 |
+
value="medium",
|
347 |
+
label="Processing Speed (faster = lower quality)",
|
348 |
+
)
|
349 |
+
with gr.Row():
|
350 |
+
rows_input = gr.Slider(
|
351 |
+
minimum=1, maximum=4, value=1, step=1, label="Grid Rows"
|
352 |
+
)
|
353 |
+
cols_input = gr.Slider(
|
354 |
+
minimum=1, maximum=4, value=1, step=1, label="Grid Columns"
|
355 |
+
)
|
356 |
+
|
357 |
+
test_mode_input = gr.Checkbox(
|
358 |
+
label="Test Mode (Process first 3 seconds only)",
|
359 |
+
value=True,
|
360 |
+
info="Enable to quickly test settings on a short clip before processing the full video (recommended). If using the data visualizations, disable.",
|
361 |
+
)
|
362 |
+
|
363 |
+
test_duration_input = gr.Slider(
|
364 |
+
minimum=1,
|
365 |
+
maximum=10,
|
366 |
+
value=3,
|
367 |
+
step=1,
|
368 |
+
label="Test Mode Duration (seconds)",
|
369 |
+
info="Number of seconds to process in test mode"
|
370 |
+
)
|
371 |
+
|
372 |
+
gr.Markdown(
|
373 |
+
"""
|
374 |
+
Note: Processing in test mode will only process the first 3 seconds of the video and is recommended for testing settings.
|
375 |
+
"""
|
376 |
+
)
|
377 |
+
|
378 |
+
gr.Markdown(
|
379 |
+
"""
|
380 |
+
We can get a rough estimate of how long the video will take to process by multiplying the videos framerate * seconds * the number of rows and columns and assuming 0.12 seconds processing time per detection.
|
381 |
+
For example, a 3 second video at 30fps with 2x2 grid, the estimated time is 3 * 30 * 2 * 2 * 0.12 = 43.2 seconds (tested on a 4090 GPU).
|
382 |
+
|
383 |
+
Note: Using the SAM visualization style will increase processing time significantly as it performs additional segmentation for each detection. The sam-fast option uses a smaller model for faster processing at the cost of some accuracy.
|
384 |
+
"""
|
385 |
+
)
|
386 |
+
|
387 |
+
with gr.Column():
|
388 |
+
# Output components
|
389 |
+
video_output = gr.Video(label="Processed Video")
|
390 |
+
json_output = gr.Text(label="Detection Data Path", visible=False)
|
391 |
+
|
392 |
+
# About section under the video output
|
393 |
+
gr.Markdown(
|
394 |
+
"""
|
395 |
+
### Links:
|
396 |
+
- [GitHub Repository](https://github.com/vikhyat/moondream)
|
397 |
+
- [Hugging Face](https://huggingface.co/vikhyatk/moondream2)
|
398 |
+
- [Quick Start](https://docs.moondream.ai/quick-start)
|
399 |
+
- [Moondream Recipes](https://docs.moondream.ai/recipes)
|
400 |
+
"""
|
401 |
+
)
|
402 |
+
|
403 |
+
with gr.Tab("Analyze Results"):
|
404 |
+
gr.Markdown("# Detection Analysis")
|
405 |
+
gr.Markdown(
|
406 |
+
"""
|
407 |
+
Analyze the detection results from processed videos. The analysis includes:
|
408 |
+
- Basic detection statistics and patterns
|
409 |
+
- Temporal and spatial distribution analysis
|
410 |
+
- Size-based categorization
|
411 |
+
- Screen region analysis
|
412 |
+
- Detection density patterns
|
413 |
+
"""
|
414 |
+
)
|
415 |
+
|
416 |
+
with gr.Row():
|
417 |
+
json_input = gr.File(
|
418 |
+
label="Upload Detection Data (JSON)",
|
419 |
+
file_types=[".json"],
|
420 |
+
)
|
421 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
422 |
+
|
423 |
+
with gr.Row():
|
424 |
+
with gr.Column():
|
425 |
+
plot1 = gr.Image(
|
426 |
+
label="Detections Per Frame",
|
427 |
+
)
|
428 |
+
plot2 = gr.Image(
|
429 |
+
label="Detection Areas Distribution",
|
430 |
+
)
|
431 |
+
plot5 = gr.Image(
|
432 |
+
label="Detection Density Timeline",
|
433 |
+
)
|
434 |
+
plot6 = gr.Image(
|
435 |
+
label="Screen Region Analysis",
|
436 |
+
)
|
437 |
+
|
438 |
+
with gr.Column():
|
439 |
+
plot3 = gr.Image(
|
440 |
+
label="Average Detection Area Over Time",
|
441 |
+
)
|
442 |
+
plot4 = gr.Image(
|
443 |
+
label="Detection Center Heatmap",
|
444 |
+
)
|
445 |
+
plot7 = gr.Image(
|
446 |
+
label="Detection Size Categories",
|
447 |
+
)
|
448 |
+
plot8 = gr.Image(
|
449 |
+
label="Temporal Pattern Analysis",
|
450 |
+
)
|
451 |
+
|
452 |
+
stats_output = gr.Textbox(
|
453 |
+
label="Statistics",
|
454 |
+
info="Summary of key metrics and patterns found in the detection data.",
|
455 |
+
lines=12,
|
456 |
+
max_lines=15,
|
457 |
+
interactive=False
|
458 |
+
)
|
459 |
+
|
460 |
+
# with gr.Tab("Video Visualizations"):
|
461 |
+
# gr.Markdown("# Real-time Detection Visualization")
|
462 |
+
# gr.Markdown(
|
463 |
+
# """
|
464 |
+
# Watch the detection patterns unfold in real-time. Choose from:
|
465 |
+
# - Timeline: Shows number of detections over time
|
466 |
+
# - Gauge: Simple yes/no indicator for current frame detections
|
467 |
+
# """
|
468 |
+
# )
|
469 |
+
|
470 |
+
# with gr.Row():
|
471 |
+
# json_input_realtime = gr.File(
|
472 |
+
# label="Upload Detection Data (JSON)",
|
473 |
+
# file_types=[".json"],
|
474 |
+
# )
|
475 |
+
# viz_style = gr.Radio(
|
476 |
+
# choices=["timeline", "gauge"],
|
477 |
+
# value="timeline",
|
478 |
+
# label="Visualization Style",
|
479 |
+
# info="Choose between timeline view or simple gauge indicator"
|
480 |
+
# )
|
481 |
+
# visualize_btn = gr.Button("Visualize", variant="primary")
|
482 |
+
|
483 |
+
# with gr.Row():
|
484 |
+
# video_visualization = gr.Video(
|
485 |
+
# label="Detection Visualization",
|
486 |
+
# interactive=False
|
487 |
+
# )
|
488 |
+
# stats_realtime = gr.Textbox(
|
489 |
+
# label="Video Statistics",
|
490 |
+
# lines=6,
|
491 |
+
# max_lines=8,
|
492 |
+
# interactive=False
|
493 |
+
# )
|
494 |
+
|
495 |
+
# Event handlers
|
496 |
+
process_outputs = process_btn.click(
|
497 |
+
fn=process_video_file,
|
498 |
+
inputs=[
|
499 |
+
video_input,
|
500 |
+
detect_input,
|
501 |
+
box_style_input,
|
502 |
+
preset_input,
|
503 |
+
rows_input,
|
504 |
+
cols_input,
|
505 |
+
test_mode_input,
|
506 |
+
test_duration_input,
|
507 |
+
],
|
508 |
+
outputs=[video_output, json_output],
|
509 |
+
)
|
510 |
+
|
511 |
+
# Auto-analyze after processing
|
512 |
+
process_outputs.then(
|
513 |
+
fn=create_visualization_plots,
|
514 |
+
inputs=[json_output],
|
515 |
+
outputs=[plot1, plot2, plot3, plot4, plot5, plot6, plot7, plot8, stats_output],
|
516 |
+
)
|
517 |
+
|
518 |
+
# Manual analysis button
|
519 |
+
analyze_btn.click(
|
520 |
+
fn=create_visualization_plots,
|
521 |
+
inputs=[json_input],
|
522 |
+
outputs=[plot1, plot2, plot3, plot4, plot5, plot6, plot7, plot8, stats_output],
|
523 |
+
)
|
524 |
+
|
525 |
+
# Video visualization button
|
526 |
+
# visualize_btn.click(
|
527 |
+
# fn=lambda json_file, style: create_video_visualization(json_file.name if json_file else None, style),
|
528 |
+
# inputs=[json_input_realtime, viz_style],
|
529 |
+
# outputs=[video_visualization, stats_realtime],
|
530 |
+
# )
|
531 |
+
|
532 |
+
if __name__ == "__main__":
|
533 |
+
app.launch(share=True)
|
deep_sort_integration.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from deep_sort_realtime.deepsort_tracker import DeepSort
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
class DeepSORTTracker:
|
7 |
+
def __init__(self, max_age=5):
|
8 |
+
"""Initialize DeepSORT tracker."""
|
9 |
+
self.max_age = max_age
|
10 |
+
self.tracker = self._create_tracker()
|
11 |
+
|
12 |
+
def _create_tracker(self):
|
13 |
+
"""Create a new instance of DeepSort tracker."""
|
14 |
+
return DeepSort(
|
15 |
+
max_age=self.max_age,
|
16 |
+
embedder='mobilenet', # Using default MobileNetV2 embedder
|
17 |
+
today=datetime.now().date() # For track naming and daily ID reset
|
18 |
+
)
|
19 |
+
|
20 |
+
def reset(self):
|
21 |
+
"""Reset the tracker state by creating a new instance."""
|
22 |
+
print("Resetting DeepSORT tracker...")
|
23 |
+
self.tracker = self._create_tracker()
|
24 |
+
|
25 |
+
def update(self, frame, detections):
|
26 |
+
"""Update tracking with new detections.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
frame: Current video frame (numpy array)
|
30 |
+
detections: List of (box, keyword) tuples where box is [x1, y1, x2, y2] normalized
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
List of (box, keyword, track_id) tuples
|
34 |
+
"""
|
35 |
+
if not detections:
|
36 |
+
return []
|
37 |
+
|
38 |
+
height, width = frame.shape[:2]
|
39 |
+
|
40 |
+
# Convert normalized coordinates to absolute and format detections
|
41 |
+
detection_list = []
|
42 |
+
for box, keyword in detections:
|
43 |
+
x1 = int(box[0] * width)
|
44 |
+
y1 = int(box[1] * height)
|
45 |
+
x2 = int(box[2] * width)
|
46 |
+
y2 = int(box[3] * height)
|
47 |
+
w = x2 - x1
|
48 |
+
h = y2 - y1
|
49 |
+
|
50 |
+
# Format: ([left,top,w,h], confidence, detection_class)
|
51 |
+
detection_list.append(([x1, y1, w, h], 1.0, keyword))
|
52 |
+
|
53 |
+
# Update tracker
|
54 |
+
tracks = self.tracker.update_tracks(detection_list, frame=frame)
|
55 |
+
|
56 |
+
# Convert back to normalized coordinates with track IDs
|
57 |
+
tracked_objects = []
|
58 |
+
for track in tracks:
|
59 |
+
if not track.is_confirmed():
|
60 |
+
continue
|
61 |
+
|
62 |
+
ltrb = track.to_ltrb() # Get [left,top,right,bottom] format
|
63 |
+
x1, y1, x2, y2 = ltrb
|
64 |
+
|
65 |
+
# Normalize coordinates
|
66 |
+
x1 = max(0.0, min(1.0, x1 / width))
|
67 |
+
y1 = max(0.0, min(1.0, y1 / height))
|
68 |
+
x2 = max(0.0, min(1.0, x2 / width))
|
69 |
+
y2 = max(0.0, min(1.0, y2 / height))
|
70 |
+
|
71 |
+
tracked_objects.append(([x1, y1, x2, y2], track.det_class, track.track_id))
|
72 |
+
|
73 |
+
return tracked_objects
|
examples/cig.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4a8bed3b243fca48b8d02ba86be87045d084d9ee8fd739a124b7c16a0e2200c
|
3 |
+
size 9771113
|
examples/clip-cig.gif
ADDED
![]() |
Git LFS Details
|
examples/clip-conflag.gif
ADDED
![]() |
Git LFS Details
|
examples/clip-gu.gif
ADDED
![]() |
Git LFS Details
|
examples/conf.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad4ffb858565c3ed6d6a955c3ba802c76f5d9bb95a0054c92c74747b694b253b
|
3 |
+
size 20389258
|
examples/gun.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80168314bef9499a80c563980429e3f674a4450333f34d6315b188eb16f8f85b
|
3 |
+
size 7369081
|
examples/homealone.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8d4410d2b3937f57b40d6084e4f4fd8538b766a69229feb1320891d3ee78e5
|
3 |
+
size 11023032
|
main.py
ADDED
@@ -0,0 +1,1236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import cv2, os, subprocess, argparse
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, SamModel, SamProcessor
|
6 |
+
from tqdm import tqdm
|
7 |
+
import numpy as np
|
8 |
+
from datetime import datetime
|
9 |
+
from deep_sort_integration import DeepSORTTracker
|
10 |
+
from scenedetect import detect, ContentDetector
|
11 |
+
from functools import lru_cache
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
DEFAULT_TEST_MODE_DURATION = 3 # Process only first 3 seconds in test mode by default
|
15 |
+
FFMPEG_PRESETS = [
|
16 |
+
"ultrafast",
|
17 |
+
"superfast",
|
18 |
+
"veryfast",
|
19 |
+
"faster",
|
20 |
+
"fast",
|
21 |
+
"medium",
|
22 |
+
"slow",
|
23 |
+
"slower",
|
24 |
+
"veryslow",
|
25 |
+
]
|
26 |
+
FONT = cv2.FONT_HERSHEY_SIMPLEX # Font for bounding-box-style labels
|
27 |
+
|
28 |
+
# Detection parameters
|
29 |
+
IOU_THRESHOLD = 0.5 # IoU threshold for considering boxes related
|
30 |
+
|
31 |
+
# Hitmarker parameters
|
32 |
+
HITMARKER_SIZE = 20 # Size of the hitmarker in pixels
|
33 |
+
HITMARKER_GAP = 3 # Size of the empty space in the middle (reduced from 8)
|
34 |
+
HITMARKER_THICKNESS = 2 # Thickness of hitmarker lines
|
35 |
+
HITMARKER_COLOR = (255, 255, 255) # White color for hitmarker
|
36 |
+
HITMARKER_SHADOW_COLOR = (80, 80, 80) # Lighter gray for shadow effect
|
37 |
+
HITMARKER_SHADOW_OFFSET = 1 # Smaller shadow offset
|
38 |
+
|
39 |
+
# SAM parameters
|
40 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
+
|
42 |
+
# Initialize model variables as None
|
43 |
+
sam_model = None
|
44 |
+
sam_processor = None
|
45 |
+
slimsam_model = None
|
46 |
+
slimsam_processor = None
|
47 |
+
|
48 |
+
@lru_cache(maxsize=2) # Cache both regular and slim SAM models
|
49 |
+
def get_sam_model(slim=False):
|
50 |
+
"""Get cached SAM model and processor."""
|
51 |
+
global sam_model, sam_processor, slimsam_model, slimsam_processor
|
52 |
+
|
53 |
+
if slim:
|
54 |
+
if slimsam_model is None:
|
55 |
+
print("Loading SlimSAM model for the first time...")
|
56 |
+
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to(device)
|
57 |
+
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
|
58 |
+
return slimsam_model, slimsam_processor
|
59 |
+
else:
|
60 |
+
if sam_model is None:
|
61 |
+
print("Loading SAM model for the first time...")
|
62 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
63 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
64 |
+
return sam_model, sam_processor
|
65 |
+
|
66 |
+
def load_sam_model(slim=False):
|
67 |
+
"""Load SAM model and processor with caching."""
|
68 |
+
return get_sam_model(slim=slim)
|
69 |
+
|
70 |
+
def generate_color_pair():
|
71 |
+
"""Generate a generic light blue and dark blue color pair for SAM visualization."""
|
72 |
+
dark_rgb = [0, 0, 139] # Dark blue
|
73 |
+
light_rgb = [173, 216, 230] # Light blue
|
74 |
+
return dark_rgb, light_rgb
|
75 |
+
|
76 |
+
def create_mask_overlay(image, masks, points=None, labels=None):
|
77 |
+
"""Create a mask overlay with contours for multiple SAM visualizations.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
image: PIL Image to overlay masks on
|
81 |
+
masks: List of binary masks or single mask
|
82 |
+
points: Optional list of (x,y) points for labels
|
83 |
+
labels: Optional list of label strings for each point
|
84 |
+
"""
|
85 |
+
# Convert single mask to list for uniform processing
|
86 |
+
if not isinstance(masks, list):
|
87 |
+
masks = [masks]
|
88 |
+
|
89 |
+
# Create empty overlays
|
90 |
+
overlay = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
|
91 |
+
outline = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
|
92 |
+
|
93 |
+
# Process each mask
|
94 |
+
for i, mask in enumerate(masks):
|
95 |
+
# Convert binary mask to uint8
|
96 |
+
mask_uint8 = (mask > 0).astype(np.uint8)
|
97 |
+
|
98 |
+
# Dilation to fill gaps
|
99 |
+
kernel = np.ones((5, 5), np.uint8)
|
100 |
+
mask_dilated = cv2.dilate(mask_uint8, kernel, iterations=1)
|
101 |
+
|
102 |
+
# Find contours of the dilated mask
|
103 |
+
contours, _ = cv2.findContours(mask_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
104 |
+
|
105 |
+
# Generate random color pair for this segmentation
|
106 |
+
dark_color, light_color = generate_color_pair()
|
107 |
+
|
108 |
+
# Add to the overlays
|
109 |
+
overlay[mask_dilated > 0] = [*light_color, 90] # Light color with 35% opacity
|
110 |
+
cv2.drawContours(outline, contours, -1, (*dark_color, 255), 2) # Dark color outline
|
111 |
+
|
112 |
+
# Convert to PIL images
|
113 |
+
mask_overlay = Image.fromarray(overlay, 'RGBA')
|
114 |
+
outline_overlay = Image.fromarray(outline, 'RGBA')
|
115 |
+
|
116 |
+
# Composite the layers
|
117 |
+
result = image.convert('RGBA')
|
118 |
+
result.paste(mask_overlay, (0, 0), mask_overlay)
|
119 |
+
result.paste(outline_overlay, (0, 0), outline_overlay)
|
120 |
+
|
121 |
+
# Add labels if provided
|
122 |
+
if points and labels:
|
123 |
+
result_array = np.array(result)
|
124 |
+
for (x, y), label in zip(points, labels):
|
125 |
+
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
|
126 |
+
cv2.putText(
|
127 |
+
result_array,
|
128 |
+
label,
|
129 |
+
(int(x - label_size[0] // 2), int(y - 20)),
|
130 |
+
FONT,
|
131 |
+
0.5,
|
132 |
+
(255, 255, 255),
|
133 |
+
1,
|
134 |
+
cv2.LINE_AA,
|
135 |
+
)
|
136 |
+
result = Image.fromarray(result_array)
|
137 |
+
|
138 |
+
return result
|
139 |
+
|
140 |
+
def process_sam_detection(image, center_x, center_y, slim=False):
|
141 |
+
"""Process a single detection point with SAM.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
tuple: (mask, result_pil) where mask is the binary mask and result_pil is the visualization
|
145 |
+
"""
|
146 |
+
if not isinstance(image, Image.Image):
|
147 |
+
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
148 |
+
|
149 |
+
# Get appropriate model from cache
|
150 |
+
model, processor = get_sam_model(slim)
|
151 |
+
|
152 |
+
# Process the image with SAM
|
153 |
+
inputs = processor(
|
154 |
+
image,
|
155 |
+
input_points=[[[center_x, center_y]]],
|
156 |
+
return_tensors="pt"
|
157 |
+
).to(device)
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
outputs = model(**inputs)
|
161 |
+
|
162 |
+
mask = processor.post_process_masks(
|
163 |
+
outputs.pred_masks.cpu(),
|
164 |
+
inputs["original_sizes"].cpu(),
|
165 |
+
inputs["reshaped_input_sizes"].cpu()
|
166 |
+
)[0][0][0].numpy()
|
167 |
+
|
168 |
+
# Create the visualization
|
169 |
+
result = create_mask_overlay(image, mask)
|
170 |
+
return mask, result
|
171 |
+
|
172 |
+
def load_moondream():
|
173 |
+
"""Load Moondream model and tokenizer."""
|
174 |
+
model = AutoModelForCausalLM.from_pretrained(
|
175 |
+
"vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
|
176 |
+
)
|
177 |
+
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
178 |
+
return model, tokenizer
|
179 |
+
|
180 |
+
|
181 |
+
def get_video_properties(video_path):
|
182 |
+
"""Get basic video properties."""
|
183 |
+
video = cv2.VideoCapture(video_path)
|
184 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
185 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
186 |
+
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
187 |
+
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
188 |
+
video.release()
|
189 |
+
return {"fps": fps, "frame_count": frame_count, "width": width, "height": height}
|
190 |
+
|
191 |
+
|
192 |
+
def is_valid_bounding_box(bounding_box):
|
193 |
+
"""Check if bounding box coordinates are reasonable."""
|
194 |
+
x1, y1, x2, y2 = bounding_box
|
195 |
+
width = x2 - x1
|
196 |
+
height = y2 - y1
|
197 |
+
|
198 |
+
# Reject boxes that are too large (over 90% of frame in both dimensions)
|
199 |
+
if width > 0.9 and height > 0.9:
|
200 |
+
return False
|
201 |
+
|
202 |
+
# Reject boxes that are too small (less than 1% of frame)
|
203 |
+
if width < 0.01 or height < 0.01:
|
204 |
+
return False
|
205 |
+
|
206 |
+
return True
|
207 |
+
|
208 |
+
|
209 |
+
def split_frame_into_grid(frame, grid_rows, grid_cols):
|
210 |
+
"""Split a frame into a grid of tiles."""
|
211 |
+
height, width = frame.shape[:2]
|
212 |
+
tile_height = height // grid_rows
|
213 |
+
tile_width = width // grid_cols
|
214 |
+
tiles = []
|
215 |
+
tile_positions = []
|
216 |
+
|
217 |
+
for i in range(grid_rows):
|
218 |
+
for j in range(grid_cols):
|
219 |
+
y1 = i * tile_height
|
220 |
+
y2 = (i + 1) * tile_height if i < grid_rows - 1 else height
|
221 |
+
x1 = j * tile_width
|
222 |
+
x2 = (j + 1) * tile_width if j < grid_cols - 1 else width
|
223 |
+
|
224 |
+
tile = frame[y1:y2, x1:x2]
|
225 |
+
tiles.append(tile)
|
226 |
+
tile_positions.append((x1, y1, x2, y2))
|
227 |
+
|
228 |
+
return tiles, tile_positions
|
229 |
+
|
230 |
+
|
231 |
+
def convert_tile_coords_to_frame(box, tile_pos, frame_shape):
|
232 |
+
"""Convert coordinates from tile space to frame space."""
|
233 |
+
frame_height, frame_width = frame_shape[:2]
|
234 |
+
tile_x1, tile_y1, tile_x2, tile_y2 = tile_pos
|
235 |
+
tile_width = tile_x2 - tile_x1
|
236 |
+
tile_height = tile_y2 - tile_y1
|
237 |
+
|
238 |
+
x1_tile_abs = box[0] * tile_width
|
239 |
+
y1_tile_abs = box[1] * tile_height
|
240 |
+
x2_tile_abs = box[2] * tile_width
|
241 |
+
y2_tile_abs = box[3] * tile_height
|
242 |
+
|
243 |
+
x1_frame_abs = tile_x1 + x1_tile_abs
|
244 |
+
y1_frame_abs = tile_y1 + y1_tile_abs
|
245 |
+
x2_frame_abs = tile_x1 + x2_tile_abs
|
246 |
+
y2_frame_abs = tile_y1 + y2_tile_abs
|
247 |
+
|
248 |
+
x1_norm = x1_frame_abs / frame_width
|
249 |
+
y1_norm = y1_frame_abs / frame_height
|
250 |
+
x2_norm = x2_frame_abs / frame_width
|
251 |
+
y2_norm = y2_frame_abs / frame_height
|
252 |
+
|
253 |
+
x1_norm = max(0.0, min(1.0, x1_norm))
|
254 |
+
y1_norm = max(0.0, min(1.0, y1_norm))
|
255 |
+
x2_norm = max(0.0, min(1.0, x2_norm))
|
256 |
+
y2_norm = max(0.0, min(1.0, y2_norm))
|
257 |
+
|
258 |
+
return [x1_norm, y1_norm, x2_norm, y2_norm]
|
259 |
+
|
260 |
+
|
261 |
+
def merge_tile_detections(tile_detections, iou_threshold=0.5):
|
262 |
+
"""Merge detections from different tiles using NMS-like approach."""
|
263 |
+
if not tile_detections:
|
264 |
+
return []
|
265 |
+
|
266 |
+
all_boxes = []
|
267 |
+
all_keywords = []
|
268 |
+
|
269 |
+
# Collect all boxes and their keywords
|
270 |
+
for detections in tile_detections:
|
271 |
+
for box, keyword in detections:
|
272 |
+
all_boxes.append(box)
|
273 |
+
all_keywords.append(keyword)
|
274 |
+
|
275 |
+
if not all_boxes:
|
276 |
+
return []
|
277 |
+
|
278 |
+
# Convert to numpy for easier processing
|
279 |
+
boxes = np.array(all_boxes)
|
280 |
+
|
281 |
+
# Calculate areas
|
282 |
+
x1 = boxes[:, 0]
|
283 |
+
y1 = boxes[:, 1]
|
284 |
+
x2 = boxes[:, 2]
|
285 |
+
y2 = boxes[:, 3]
|
286 |
+
areas = (x2 - x1) * (y2 - y1)
|
287 |
+
|
288 |
+
# Sort boxes by area
|
289 |
+
order = areas.argsort()[::-1]
|
290 |
+
|
291 |
+
keep = []
|
292 |
+
while order.size > 0:
|
293 |
+
i = order[0]
|
294 |
+
keep.append(i)
|
295 |
+
|
296 |
+
if order.size == 1:
|
297 |
+
break
|
298 |
+
|
299 |
+
# Calculate IoU with rest of boxes
|
300 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
301 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
302 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
303 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
304 |
+
|
305 |
+
w = np.maximum(0.0, xx2 - xx1)
|
306 |
+
h = np.maximum(0.0, yy2 - yy1)
|
307 |
+
inter = w * h
|
308 |
+
|
309 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
310 |
+
|
311 |
+
# Get indices of boxes with IoU less than threshold
|
312 |
+
inds = np.where(ovr <= iou_threshold)[0]
|
313 |
+
order = order[inds + 1]
|
314 |
+
|
315 |
+
return [(all_boxes[i], all_keywords[i]) for i in keep]
|
316 |
+
|
317 |
+
|
318 |
+
def detect_objects_in_frame(model, tokenizer, image, target_object, grid_rows=1, grid_cols=1):
|
319 |
+
"""Detect specified objects in a frame using grid-based analysis."""
|
320 |
+
if grid_rows == 1 and grid_cols == 1:
|
321 |
+
return detect_objects_in_frame_single(model, tokenizer, image, target_object)
|
322 |
+
|
323 |
+
# Convert numpy array to PIL Image if needed
|
324 |
+
if not isinstance(image, Image.Image):
|
325 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
326 |
+
|
327 |
+
# Split frame into tiles
|
328 |
+
tiles, tile_positions = split_frame_into_grid(image, grid_rows, grid_cols)
|
329 |
+
|
330 |
+
# Process each tile
|
331 |
+
tile_detections = []
|
332 |
+
for tile, tile_pos in zip(tiles, tile_positions):
|
333 |
+
# Convert tile to PIL Image
|
334 |
+
tile_pil = Image.fromarray(tile)
|
335 |
+
|
336 |
+
# Detect objects in tile
|
337 |
+
response = model.detect(tile_pil, target_object)
|
338 |
+
|
339 |
+
if response and "objects" in response and response["objects"]:
|
340 |
+
objects = response["objects"]
|
341 |
+
tile_objects = []
|
342 |
+
|
343 |
+
for obj in objects:
|
344 |
+
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
|
345 |
+
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
|
346 |
+
|
347 |
+
if is_valid_bounding_box(box):
|
348 |
+
# Convert tile coordinates to frame coordinates
|
349 |
+
frame_box = convert_tile_coords_to_frame(
|
350 |
+
box, tile_pos, image.shape
|
351 |
+
)
|
352 |
+
tile_objects.append((frame_box, target_object))
|
353 |
+
|
354 |
+
if tile_objects: # Only append if we found valid objects
|
355 |
+
tile_detections.append(tile_objects)
|
356 |
+
|
357 |
+
# Merge detections from all tiles
|
358 |
+
merged_detections = merge_tile_detections(tile_detections)
|
359 |
+
return merged_detections
|
360 |
+
|
361 |
+
|
362 |
+
def detect_objects_in_frame_single(model, tokenizer, image, target_object):
|
363 |
+
"""Single-frame detection function."""
|
364 |
+
detected_objects = []
|
365 |
+
|
366 |
+
# Convert numpy array to PIL Image if needed
|
367 |
+
if not isinstance(image, Image.Image):
|
368 |
+
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
369 |
+
|
370 |
+
# Detect objects
|
371 |
+
response = model.detect(image, target_object)
|
372 |
+
|
373 |
+
# Check if we have valid objects
|
374 |
+
if response and "objects" in response and response["objects"]:
|
375 |
+
objects = response["objects"]
|
376 |
+
|
377 |
+
for obj in objects:
|
378 |
+
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
|
379 |
+
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
|
380 |
+
# If box is valid (not full-frame), add it
|
381 |
+
if is_valid_bounding_box(box):
|
382 |
+
detected_objects.append((box, target_object))
|
383 |
+
|
384 |
+
return detected_objects
|
385 |
+
|
386 |
+
|
387 |
+
def draw_hitmarker(
|
388 |
+
frame, center_x, center_y, size=HITMARKER_SIZE, color=HITMARKER_COLOR, shadow=True
|
389 |
+
):
|
390 |
+
"""Draw a COD-style hitmarker cross with more space in the middle."""
|
391 |
+
half_size = size // 2
|
392 |
+
|
393 |
+
# Draw shadow first if enabled
|
394 |
+
if shadow:
|
395 |
+
# Top-left to center shadow
|
396 |
+
cv2.line(
|
397 |
+
frame,
|
398 |
+
(
|
399 |
+
center_x - half_size + HITMARKER_SHADOW_OFFSET,
|
400 |
+
center_y - half_size + HITMARKER_SHADOW_OFFSET,
|
401 |
+
),
|
402 |
+
(
|
403 |
+
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
404 |
+
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
405 |
+
),
|
406 |
+
HITMARKER_SHADOW_COLOR,
|
407 |
+
HITMARKER_THICKNESS,
|
408 |
+
)
|
409 |
+
# Top-right to center shadow
|
410 |
+
cv2.line(
|
411 |
+
frame,
|
412 |
+
(
|
413 |
+
center_x + half_size + HITMARKER_SHADOW_OFFSET,
|
414 |
+
center_y - half_size + HITMARKER_SHADOW_OFFSET,
|
415 |
+
),
|
416 |
+
(
|
417 |
+
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
418 |
+
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
419 |
+
),
|
420 |
+
HITMARKER_SHADOW_COLOR,
|
421 |
+
HITMARKER_THICKNESS,
|
422 |
+
)
|
423 |
+
# Bottom-left to center shadow
|
424 |
+
cv2.line(
|
425 |
+
frame,
|
426 |
+
(
|
427 |
+
center_x - half_size + HITMARKER_SHADOW_OFFSET,
|
428 |
+
center_y + half_size + HITMARKER_SHADOW_OFFSET,
|
429 |
+
),
|
430 |
+
(
|
431 |
+
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
432 |
+
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
433 |
+
),
|
434 |
+
HITMARKER_SHADOW_COLOR,
|
435 |
+
HITMARKER_THICKNESS,
|
436 |
+
)
|
437 |
+
# Bottom-right to center shadow
|
438 |
+
cv2.line(
|
439 |
+
frame,
|
440 |
+
(
|
441 |
+
center_x + half_size + HITMARKER_SHADOW_OFFSET,
|
442 |
+
center_y + half_size + HITMARKER_SHADOW_OFFSET,
|
443 |
+
),
|
444 |
+
(
|
445 |
+
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
446 |
+
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
|
447 |
+
),
|
448 |
+
HITMARKER_SHADOW_COLOR,
|
449 |
+
HITMARKER_THICKNESS,
|
450 |
+
)
|
451 |
+
|
452 |
+
# Draw main hitmarker
|
453 |
+
# Top-left to center
|
454 |
+
cv2.line(
|
455 |
+
frame,
|
456 |
+
(center_x - half_size, center_y - half_size),
|
457 |
+
(center_x - HITMARKER_GAP, center_y - HITMARKER_GAP),
|
458 |
+
color,
|
459 |
+
HITMARKER_THICKNESS,
|
460 |
+
)
|
461 |
+
# Top-right to center
|
462 |
+
cv2.line(
|
463 |
+
frame,
|
464 |
+
(center_x + half_size, center_y - half_size),
|
465 |
+
(center_x + HITMARKER_GAP, center_y - HITMARKER_GAP),
|
466 |
+
color,
|
467 |
+
HITMARKER_THICKNESS,
|
468 |
+
)
|
469 |
+
# Bottom-left to center
|
470 |
+
cv2.line(
|
471 |
+
frame,
|
472 |
+
(center_x - half_size, center_y + half_size),
|
473 |
+
(center_x - HITMARKER_GAP, center_y + HITMARKER_GAP),
|
474 |
+
color,
|
475 |
+
HITMARKER_THICKNESS,
|
476 |
+
)
|
477 |
+
# Bottom-right to center
|
478 |
+
cv2.line(
|
479 |
+
frame,
|
480 |
+
(center_x + half_size, center_y + half_size),
|
481 |
+
(center_x + HITMARKER_GAP, center_y + HITMARKER_GAP),
|
482 |
+
color,
|
483 |
+
HITMARKER_THICKNESS,
|
484 |
+
)
|
485 |
+
|
486 |
+
|
487 |
+
def draw_ad_boxes(frame, detected_objects, detect_keyword, model, box_style="censor"):
|
488 |
+
height, width = frame.shape[:2]
|
489 |
+
|
490 |
+
points = []
|
491 |
+
# Only get points if we need them for hitmarker or SAM styles
|
492 |
+
if box_style in ["hitmarker", "sam", "sam-fast"]:
|
493 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
494 |
+
try:
|
495 |
+
point_response = model.point(frame_pil, detect_keyword)
|
496 |
+
|
497 |
+
if isinstance(point_response, dict) and 'points' in point_response:
|
498 |
+
points = point_response['points']
|
499 |
+
except Exception as e:
|
500 |
+
print(f"Error during point detection: {str(e)}")
|
501 |
+
points = []
|
502 |
+
|
503 |
+
# Only load SAM models and process points if we're using SAM styles and have points
|
504 |
+
if box_style in ["sam", "sam-fast"] and points:
|
505 |
+
# Start with the original PIL image
|
506 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
507 |
+
|
508 |
+
# Collect all masks and points
|
509 |
+
all_masks = []
|
510 |
+
point_coords = []
|
511 |
+
point_labels = []
|
512 |
+
|
513 |
+
for point in points:
|
514 |
+
try:
|
515 |
+
center_x = int(float(point["x"]) * width)
|
516 |
+
center_y = int(float(point["y"]) * height)
|
517 |
+
|
518 |
+
# Get mask and visualization
|
519 |
+
mask, _ = process_sam_detection(frame_pil, center_x, center_y, slim=(box_style == "sam-fast"))
|
520 |
+
|
521 |
+
# Collect mask and point data
|
522 |
+
all_masks.append(mask)
|
523 |
+
point_coords.append((center_x, center_y))
|
524 |
+
point_labels.append(detect_keyword)
|
525 |
+
|
526 |
+
except Exception as e:
|
527 |
+
print(f"Error processing individual SAM point: {str(e)}")
|
528 |
+
print(f"Point data: {point}")
|
529 |
+
|
530 |
+
if all_masks:
|
531 |
+
# Create final visualization with all masks
|
532 |
+
result_pil = create_mask_overlay(frame_pil, all_masks, point_coords, point_labels)
|
533 |
+
frame = cv2.cvtColor(np.array(result_pil), cv2.COLOR_RGB2BGR)
|
534 |
+
|
535 |
+
# Process other visualization styles
|
536 |
+
for detection in detected_objects:
|
537 |
+
try:
|
538 |
+
# Handle both tracked and untracked detections
|
539 |
+
if len(detection) == 3: # Tracked detection with ID
|
540 |
+
box, keyword, track_id = detection
|
541 |
+
else: # Regular detection without tracking
|
542 |
+
box, keyword = detection
|
543 |
+
track_id = None
|
544 |
+
|
545 |
+
x1 = int(box[0] * width)
|
546 |
+
y1 = int(box[1] * height)
|
547 |
+
x2 = int(box[2] * width)
|
548 |
+
y2 = int(box[3] * height)
|
549 |
+
|
550 |
+
x1 = max(0, min(x1, width - 1))
|
551 |
+
y1 = max(0, min(y1, height - 1))
|
552 |
+
x2 = max(0, min(x2, width - 1))
|
553 |
+
y2 = max(0, min(y2, height - 1))
|
554 |
+
|
555 |
+
if x2 > x1 and y2 > y1:
|
556 |
+
if box_style == "censor":
|
557 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), -1)
|
558 |
+
elif box_style == "bounding-box":
|
559 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
|
560 |
+
|
561 |
+
label = f"{detect_keyword}" if track_id is not None else detect_keyword
|
562 |
+
label_size = cv2.getTextSize(label, FONT, 0.7, 2)[0]
|
563 |
+
cv2.rectangle(
|
564 |
+
frame, (x1, y1 - 25), (x1 + label_size[0], y1), (0, 0, 255), -1
|
565 |
+
)
|
566 |
+
cv2.putText(
|
567 |
+
frame,
|
568 |
+
label,
|
569 |
+
(x1, y1 - 6),
|
570 |
+
FONT,
|
571 |
+
0.7,
|
572 |
+
(255, 255, 255),
|
573 |
+
2,
|
574 |
+
cv2.LINE_AA,
|
575 |
+
)
|
576 |
+
elif box_style == "fuzzy-blur":
|
577 |
+
# Extract ROI
|
578 |
+
roi = frame[y1:y2, x1:x2]
|
579 |
+
# Apply Gaussian blur with much larger kernel for intense blur
|
580 |
+
blurred_roi = cv2.GaussianBlur(roi, (125, 125), 0)
|
581 |
+
# Replace original ROI with blurred version
|
582 |
+
frame[y1:y2, x1:x2] = blurred_roi
|
583 |
+
elif box_style == "pixelated-blur":
|
584 |
+
# Extract ROI
|
585 |
+
roi = frame[y1:y2, x1:x2]
|
586 |
+
# Pixelate by resizing down and up
|
587 |
+
h, w = roi.shape[:2]
|
588 |
+
temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
|
589 |
+
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
590 |
+
# Mix up the pixelated frame slightly by adding random noise
|
591 |
+
noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
|
592 |
+
pixelated = cv2.add(pixelated, noise)
|
593 |
+
# Apply stronger Gaussian blur to smooth edges
|
594 |
+
blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
|
595 |
+
# Replace original ROI
|
596 |
+
frame[y1:y2, x1:x2] = blurred_pixelated
|
597 |
+
elif box_style == "obfuscated-pixel":
|
598 |
+
# Calculate expansion amount based on 10% of object dimensions
|
599 |
+
box_width = x2 - x1
|
600 |
+
box_height = y2 - y1
|
601 |
+
expand_x = int(box_width * 0.10)
|
602 |
+
expand_y = int(box_height * 0.10)
|
603 |
+
|
604 |
+
# Expand the bounding box by 10% in all directions
|
605 |
+
x1_expanded = max(0, x1 - expand_x)
|
606 |
+
y1_expanded = max(0, y1 - expand_y)
|
607 |
+
x2_expanded = min(width - 1, x2 + expand_x)
|
608 |
+
y2_expanded = min(height - 1, y2 + expand_y)
|
609 |
+
|
610 |
+
# Extract ROI with much larger padding for true background sampling
|
611 |
+
padding = 100 # Much larger padding to get true background
|
612 |
+
y1_pad = max(0, y1_expanded - padding)
|
613 |
+
y2_pad = min(height, y2_expanded + padding)
|
614 |
+
x1_pad = max(0, x1_expanded - padding)
|
615 |
+
x2_pad = min(width, x2_expanded + padding)
|
616 |
+
|
617 |
+
# Get the padded region including background
|
618 |
+
padded_roi = frame[y1_pad:y2_pad, x1_pad:x2_pad]
|
619 |
+
|
620 |
+
# Create mask that excludes a larger region around the detection
|
621 |
+
h, w = y2_expanded - y1_expanded, x2_expanded - x1_expanded
|
622 |
+
bg_mask = np.ones(padded_roi.shape[:2], dtype=bool)
|
623 |
+
|
624 |
+
# Exclude a larger region around the detection from background sampling
|
625 |
+
exclusion_padding = 50 # Area to exclude around detection
|
626 |
+
exclude_y1 = padding - exclusion_padding
|
627 |
+
exclude_y2 = padding + h + exclusion_padding
|
628 |
+
exclude_x1 = padding - exclusion_padding
|
629 |
+
exclude_x2 = padding + w + exclusion_padding
|
630 |
+
|
631 |
+
# Make sure exclusion coordinates are valid
|
632 |
+
exclude_y1 = max(0, exclude_y1)
|
633 |
+
exclude_y2 = min(padded_roi.shape[0], exclude_y2)
|
634 |
+
exclude_x1 = max(0, exclude_x1)
|
635 |
+
exclude_x2 = min(padded_roi.shape[1], exclude_x2)
|
636 |
+
|
637 |
+
# Mark the exclusion zone in the mask
|
638 |
+
bg_mask[exclude_y1:exclude_y2, exclude_x1:exclude_x2] = False
|
639 |
+
|
640 |
+
# If we have enough background pixels, calculate average color
|
641 |
+
if np.any(bg_mask):
|
642 |
+
bg_color = np.mean(padded_roi[bg_mask], axis=0).astype(np.uint8)
|
643 |
+
else:
|
644 |
+
# Fallback to edges if we couldn't get enough background
|
645 |
+
edge_samples = np.concatenate([
|
646 |
+
padded_roi[0], # Top edge
|
647 |
+
padded_roi[-1], # Bottom edge
|
648 |
+
padded_roi[:, 0], # Left edge
|
649 |
+
padded_roi[:, -1] # Right edge
|
650 |
+
])
|
651 |
+
bg_color = np.mean(edge_samples, axis=0).astype(np.uint8)
|
652 |
+
|
653 |
+
# Create base pixelated version (of the expanded region)
|
654 |
+
temp = cv2.resize(frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded],
|
655 |
+
(6, 6), interpolation=cv2.INTER_LINEAR)
|
656 |
+
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
657 |
+
|
658 |
+
# Blend heavily towards background color
|
659 |
+
blend_factor = 0.9 # Much stronger blend with background
|
660 |
+
blended = cv2.addWeighted(
|
661 |
+
pixelated, 1 - blend_factor,
|
662 |
+
np.full((h, w, 3), bg_color, dtype=np.uint8), blend_factor,
|
663 |
+
0
|
664 |
+
)
|
665 |
+
|
666 |
+
# Replace original ROI with blended version (using expanded coordinates)
|
667 |
+
frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blended
|
668 |
+
elif box_style == "intense-pixelated-blur":
|
669 |
+
# Expand the bounding box by pixels in all directions
|
670 |
+
x1_expanded = max(0, x1 - 15)
|
671 |
+
y1_expanded = max(0, y1 - 15)
|
672 |
+
x2_expanded = min(width - 1, x2 + 25)
|
673 |
+
y2_expanded = min(height - 1, y2 + 25)
|
674 |
+
|
675 |
+
# Extract ROI
|
676 |
+
roi = frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded]
|
677 |
+
# Pixelate by resizing down and up
|
678 |
+
h, w = roi.shape[:2]
|
679 |
+
temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
|
680 |
+
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
681 |
+
# Mix up the pixelated frame slightly by adding random noise
|
682 |
+
noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
|
683 |
+
pixelated = cv2.add(pixelated, noise)
|
684 |
+
# Apply stronger Gaussian blur to smooth edges
|
685 |
+
blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
|
686 |
+
# Replace original ROI
|
687 |
+
frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blurred_pixelated
|
688 |
+
elif box_style == "hitmarker":
|
689 |
+
if points:
|
690 |
+
for point in points:
|
691 |
+
try:
|
692 |
+
print(f"Processing point: {point}")
|
693 |
+
center_x = int(float(point["x"]) * width)
|
694 |
+
center_y = int(float(point["y"]) * height)
|
695 |
+
print(f"Converted coordinates: ({center_x}, {center_y})")
|
696 |
+
|
697 |
+
draw_hitmarker(frame, center_x, center_y)
|
698 |
+
|
699 |
+
label = f"{detect_keyword}" if track_id is not None else detect_keyword
|
700 |
+
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
|
701 |
+
cv2.putText(
|
702 |
+
frame,
|
703 |
+
label,
|
704 |
+
(center_x - label_size[0] // 2, center_y - HITMARKER_SIZE - 5),
|
705 |
+
FONT,
|
706 |
+
0.5,
|
707 |
+
HITMARKER_COLOR,
|
708 |
+
1,
|
709 |
+
cv2.LINE_AA,
|
710 |
+
)
|
711 |
+
except Exception as e:
|
712 |
+
print(f"Error processing individual point: {str(e)}")
|
713 |
+
print(f"Point data: {point}")
|
714 |
+
|
715 |
+
except Exception as e:
|
716 |
+
print(f"Error drawing {box_style} style box: {str(e)}")
|
717 |
+
print(f"Box data: {box}")
|
718 |
+
print(f"Keyword: {keyword}")
|
719 |
+
|
720 |
+
return frame
|
721 |
+
|
722 |
+
|
723 |
+
def filter_temporal_outliers(detections_dict):
|
724 |
+
"""Filter out extremely large detections that take up most of the frame.
|
725 |
+
Only keeps detections that are reasonable in size.
|
726 |
+
|
727 |
+
Args:
|
728 |
+
detections_dict: Dictionary of {frame_number: [(box, keyword, track_id), ...]}
|
729 |
+
"""
|
730 |
+
filtered_detections = {}
|
731 |
+
|
732 |
+
for t, detections in detections_dict.items():
|
733 |
+
# Only keep detections that aren't too large
|
734 |
+
valid_detections = []
|
735 |
+
for detection in detections:
|
736 |
+
# Handle both tracked and untracked detections
|
737 |
+
if len(detection) == 3: # Tracked detection with ID
|
738 |
+
box, keyword, track_id = detection
|
739 |
+
else: # Regular detection without tracking
|
740 |
+
box, keyword = detection
|
741 |
+
track_id = None
|
742 |
+
|
743 |
+
# Calculate box size as percentage of frame
|
744 |
+
width = box[2] - box[0]
|
745 |
+
height = box[3] - box[1]
|
746 |
+
area = width * height
|
747 |
+
|
748 |
+
# If box is less than 90% of frame, keep it
|
749 |
+
if area < 0.9:
|
750 |
+
if track_id is not None:
|
751 |
+
valid_detections.append((box, keyword, track_id))
|
752 |
+
else:
|
753 |
+
valid_detections.append((box, keyword))
|
754 |
+
|
755 |
+
if valid_detections:
|
756 |
+
filtered_detections[t] = valid_detections
|
757 |
+
|
758 |
+
return filtered_detections
|
759 |
+
|
760 |
+
|
761 |
+
def describe_frames(video_path, model, tokenizer, detect_keyword, test_mode=False, test_duration=DEFAULT_TEST_MODE_DURATION, grid_rows=1, grid_cols=1):
|
762 |
+
"""Extract and detect objects in frames."""
|
763 |
+
props = get_video_properties(video_path)
|
764 |
+
fps = props["fps"]
|
765 |
+
|
766 |
+
# Initialize DeepSORT tracker
|
767 |
+
tracker = DeepSORTTracker()
|
768 |
+
|
769 |
+
# If in test mode, only process first N seconds
|
770 |
+
if test_mode:
|
771 |
+
frame_count = min(int(fps * test_duration), props["frame_count"])
|
772 |
+
else:
|
773 |
+
frame_count = props["frame_count"]
|
774 |
+
|
775 |
+
ad_detections = {} # Store detection results by frame number
|
776 |
+
|
777 |
+
print("Extracting frames and detecting objects...")
|
778 |
+
video = cv2.VideoCapture(video_path)
|
779 |
+
|
780 |
+
# Detect scenes first
|
781 |
+
scenes = detect(video_path, scene_detector)
|
782 |
+
scene_changes = set(end.get_frames() for _, end in scenes)
|
783 |
+
print(f"Detected {len(scenes)} scenes")
|
784 |
+
|
785 |
+
frame_count_processed = 0
|
786 |
+
with tqdm(total=frame_count) as pbar:
|
787 |
+
while frame_count_processed < frame_count:
|
788 |
+
ret, frame = video.read()
|
789 |
+
if not ret:
|
790 |
+
break
|
791 |
+
|
792 |
+
# Check if current frame is a scene change
|
793 |
+
if frame_count_processed in scene_changes:
|
794 |
+
# Detect objects in the frame
|
795 |
+
detected_objects = detect_objects_in_frame(
|
796 |
+
model, tokenizer, frame, detect_keyword, grid_rows=grid_rows, grid_cols=grid_cols
|
797 |
+
)
|
798 |
+
|
799 |
+
# Update tracker with current detections
|
800 |
+
tracked_objects = tracker.update(frame, detected_objects)
|
801 |
+
|
802 |
+
# Store results for every frame, even if empty
|
803 |
+
ad_detections[frame_count_processed] = tracked_objects
|
804 |
+
|
805 |
+
frame_count_processed += 1
|
806 |
+
pbar.update(1)
|
807 |
+
|
808 |
+
video.release()
|
809 |
+
|
810 |
+
if frame_count_processed == 0:
|
811 |
+
print("No frames could be read from video")
|
812 |
+
return {}
|
813 |
+
|
814 |
+
return ad_detections
|
815 |
+
|
816 |
+
|
817 |
+
def create_detection_video(
|
818 |
+
video_path,
|
819 |
+
ad_detections,
|
820 |
+
detect_keyword,
|
821 |
+
model,
|
822 |
+
output_path=None,
|
823 |
+
ffmpeg_preset="medium",
|
824 |
+
test_mode=False,
|
825 |
+
test_duration=DEFAULT_TEST_MODE_DURATION,
|
826 |
+
box_style="censor",
|
827 |
+
):
|
828 |
+
"""Create video with detection boxes while preserving audio."""
|
829 |
+
if output_path is None:
|
830 |
+
# Create outputs directory if it doesn't exist
|
831 |
+
outputs_dir = os.path.join(
|
832 |
+
os.path.dirname(os.path.abspath(__file__)), "outputs"
|
833 |
+
)
|
834 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
835 |
+
|
836 |
+
# Clean the detect_keyword for filename
|
837 |
+
safe_keyword = "".join(
|
838 |
+
x for x in detect_keyword if x.isalnum() or x in (" ", "_", "-")
|
839 |
+
)
|
840 |
+
safe_keyword = safe_keyword.replace(" ", "_")
|
841 |
+
|
842 |
+
# Create output filename
|
843 |
+
base_name = os.path.splitext(os.path.basename(video_path))[0]
|
844 |
+
output_path = os.path.join(
|
845 |
+
outputs_dir, f"{box_style}_{safe_keyword}_{base_name}.mp4"
|
846 |
+
)
|
847 |
+
|
848 |
+
print(f"Will save output to: {output_path}")
|
849 |
+
|
850 |
+
props = get_video_properties(video_path)
|
851 |
+
fps, width, height = props["fps"], props["width"], props["height"]
|
852 |
+
|
853 |
+
# If in test mode, only process first few seconds
|
854 |
+
if test_mode:
|
855 |
+
frame_count = min(int(fps * test_duration), props["frame_count"])
|
856 |
+
print(f"Test mode enabled: Processing first {test_duration} seconds ({frame_count} frames)")
|
857 |
+
else:
|
858 |
+
frame_count = props["frame_count"]
|
859 |
+
print("Full video mode: Processing entire video")
|
860 |
+
|
861 |
+
video = cv2.VideoCapture(video_path)
|
862 |
+
|
863 |
+
# Create temp output path by adding _temp before the extension
|
864 |
+
base, ext = os.path.splitext(output_path)
|
865 |
+
temp_output = f"{base}_temp{ext}"
|
866 |
+
temp_audio = f"{base}_audio.aac" # Temporary audio file
|
867 |
+
|
868 |
+
out = cv2.VideoWriter(
|
869 |
+
temp_output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
|
870 |
+
)
|
871 |
+
|
872 |
+
print("Creating detection video...")
|
873 |
+
frame_count_processed = 0
|
874 |
+
|
875 |
+
with tqdm(total=frame_count) as pbar:
|
876 |
+
while frame_count_processed < frame_count:
|
877 |
+
ret, frame = video.read()
|
878 |
+
if not ret:
|
879 |
+
break
|
880 |
+
|
881 |
+
# Get detections for this exact frame
|
882 |
+
if frame_count_processed in ad_detections:
|
883 |
+
current_detections = ad_detections[frame_count_processed]
|
884 |
+
if current_detections:
|
885 |
+
frame = draw_ad_boxes(
|
886 |
+
frame, current_detections, detect_keyword, model, box_style=box_style
|
887 |
+
)
|
888 |
+
|
889 |
+
out.write(frame)
|
890 |
+
frame_count_processed += 1
|
891 |
+
pbar.update(1)
|
892 |
+
|
893 |
+
video.release()
|
894 |
+
out.release()
|
895 |
+
|
896 |
+
# Extract audio from original video
|
897 |
+
try:
|
898 |
+
if test_mode:
|
899 |
+
# In test mode, extract only the required duration of audio
|
900 |
+
subprocess.run(
|
901 |
+
[
|
902 |
+
"ffmpeg",
|
903 |
+
"-y",
|
904 |
+
"-i",
|
905 |
+
video_path,
|
906 |
+
"-t",
|
907 |
+
str(test_duration),
|
908 |
+
"-vn", # No video
|
909 |
+
"-acodec",
|
910 |
+
"copy",
|
911 |
+
temp_audio,
|
912 |
+
],
|
913 |
+
check=True,
|
914 |
+
)
|
915 |
+
else:
|
916 |
+
subprocess.run(
|
917 |
+
[
|
918 |
+
"ffmpeg",
|
919 |
+
"-y",
|
920 |
+
"-i",
|
921 |
+
video_path,
|
922 |
+
"-vn", # No video
|
923 |
+
"-acodec",
|
924 |
+
"copy",
|
925 |
+
temp_audio,
|
926 |
+
],
|
927 |
+
check=True,
|
928 |
+
)
|
929 |
+
except subprocess.CalledProcessError as e:
|
930 |
+
print(f"Error extracting audio: {str(e)}")
|
931 |
+
if os.path.exists(temp_output):
|
932 |
+
os.remove(temp_output)
|
933 |
+
return None
|
934 |
+
|
935 |
+
# Merge processed video with original audio
|
936 |
+
try:
|
937 |
+
# Base FFmpeg command
|
938 |
+
ffmpeg_cmd = [
|
939 |
+
"ffmpeg",
|
940 |
+
"-y",
|
941 |
+
"-i",
|
942 |
+
temp_output,
|
943 |
+
"-i",
|
944 |
+
temp_audio,
|
945 |
+
"-c:v",
|
946 |
+
"libx264",
|
947 |
+
"-preset",
|
948 |
+
ffmpeg_preset,
|
949 |
+
"-crf",
|
950 |
+
"23",
|
951 |
+
"-c:a",
|
952 |
+
"aac",
|
953 |
+
"-b:a",
|
954 |
+
"192k",
|
955 |
+
"-movflags",
|
956 |
+
"+faststart", # Better web playback
|
957 |
+
]
|
958 |
+
|
959 |
+
if test_mode:
|
960 |
+
# In test mode, ensure output duration matches test_duration
|
961 |
+
ffmpeg_cmd.extend([
|
962 |
+
"-t",
|
963 |
+
str(test_duration),
|
964 |
+
"-shortest" # Ensure output duration matches shortest input
|
965 |
+
])
|
966 |
+
|
967 |
+
ffmpeg_cmd.extend([
|
968 |
+
"-loglevel",
|
969 |
+
"error",
|
970 |
+
output_path
|
971 |
+
])
|
972 |
+
|
973 |
+
subprocess.run(ffmpeg_cmd, check=True)
|
974 |
+
|
975 |
+
# Clean up temporary files
|
976 |
+
os.remove(temp_output)
|
977 |
+
os.remove(temp_audio)
|
978 |
+
|
979 |
+
if not os.path.exists(output_path):
|
980 |
+
print(
|
981 |
+
f"Warning: FFmpeg completed but output file not found at {output_path}"
|
982 |
+
)
|
983 |
+
return None
|
984 |
+
|
985 |
+
return output_path
|
986 |
+
|
987 |
+
except subprocess.CalledProcessError as e:
|
988 |
+
print(f"Error merging audio with video: {str(e)}")
|
989 |
+
if os.path.exists(temp_output):
|
990 |
+
os.remove(temp_output)
|
991 |
+
if os.path.exists(temp_audio):
|
992 |
+
os.remove(temp_audio)
|
993 |
+
return None
|
994 |
+
|
995 |
+
|
996 |
+
def process_video(
|
997 |
+
video_path,
|
998 |
+
target_object,
|
999 |
+
test_mode=False,
|
1000 |
+
test_duration=DEFAULT_TEST_MODE_DURATION,
|
1001 |
+
ffmpeg_preset="medium",
|
1002 |
+
grid_rows=1,
|
1003 |
+
grid_cols=1,
|
1004 |
+
box_style="censor",
|
1005 |
+
):
|
1006 |
+
"""Process a video to detect and visualize specified objects."""
|
1007 |
+
try:
|
1008 |
+
print(f"\nProcessing: {video_path}")
|
1009 |
+
print(f"Looking for: {target_object}")
|
1010 |
+
|
1011 |
+
# Load model
|
1012 |
+
print("Loading Moondream model...")
|
1013 |
+
model, tokenizer = load_moondream()
|
1014 |
+
|
1015 |
+
# Get video properties
|
1016 |
+
props = get_video_properties(video_path)
|
1017 |
+
|
1018 |
+
# Initialize scene detector with ContentDetector
|
1019 |
+
scene_detector = ContentDetector(threshold=30.0) # Adjust threshold as needed
|
1020 |
+
|
1021 |
+
# Initialize DeepSORT tracker
|
1022 |
+
tracker = DeepSORTTracker()
|
1023 |
+
|
1024 |
+
# If in test mode, only process first N seconds
|
1025 |
+
if test_mode:
|
1026 |
+
frame_count = min(int(props["fps"] * test_duration), props["frame_count"])
|
1027 |
+
else:
|
1028 |
+
frame_count = props["frame_count"]
|
1029 |
+
|
1030 |
+
ad_detections = {} # Store detection results by frame number
|
1031 |
+
|
1032 |
+
print("Extracting frames and detecting objects...")
|
1033 |
+
video = cv2.VideoCapture(video_path)
|
1034 |
+
|
1035 |
+
# Detect scenes first
|
1036 |
+
scenes = detect(video_path, scene_detector)
|
1037 |
+
scene_changes = set(end.get_frames() for _, end in scenes)
|
1038 |
+
print(f"Detected {len(scenes)} scenes")
|
1039 |
+
|
1040 |
+
frame_count_processed = 0
|
1041 |
+
with tqdm(total=frame_count) as pbar:
|
1042 |
+
while frame_count_processed < frame_count:
|
1043 |
+
ret, frame = video.read()
|
1044 |
+
if not ret:
|
1045 |
+
break
|
1046 |
+
|
1047 |
+
# Check if current frame is a scene change
|
1048 |
+
if frame_count_processed in scene_changes:
|
1049 |
+
print(f"Scene change detected at frame {frame_count_processed}. Resetting tracker.")
|
1050 |
+
tracker.reset()
|
1051 |
+
|
1052 |
+
# Detect objects in the frame
|
1053 |
+
detected_objects = detect_objects_in_frame(
|
1054 |
+
model, tokenizer, frame, target_object, grid_rows=grid_rows, grid_cols=grid_cols
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
# Update tracker with current detections
|
1058 |
+
tracked_objects = tracker.update(frame, detected_objects)
|
1059 |
+
|
1060 |
+
# Store results for every frame, even if empty
|
1061 |
+
ad_detections[frame_count_processed] = tracked_objects
|
1062 |
+
|
1063 |
+
frame_count_processed += 1
|
1064 |
+
pbar.update(1)
|
1065 |
+
|
1066 |
+
video.release()
|
1067 |
+
|
1068 |
+
if frame_count_processed == 0:
|
1069 |
+
print("No frames could be read from video")
|
1070 |
+
return {}
|
1071 |
+
|
1072 |
+
# Apply filtering
|
1073 |
+
filtered_ad_detections = filter_temporal_outliers(ad_detections)
|
1074 |
+
|
1075 |
+
# Build detection data structure
|
1076 |
+
detection_data = {
|
1077 |
+
"video_metadata": {
|
1078 |
+
"file_name": os.path.basename(video_path),
|
1079 |
+
"fps": props["fps"],
|
1080 |
+
"width": props["width"],
|
1081 |
+
"height": props["height"],
|
1082 |
+
"total_frames": props["frame_count"],
|
1083 |
+
"duration_sec": props["frame_count"] / props["fps"],
|
1084 |
+
"detect_keyword": target_object,
|
1085 |
+
"test_mode": test_mode,
|
1086 |
+
"grid_size": f"{grid_rows}x{grid_cols}",
|
1087 |
+
"box_style": box_style,
|
1088 |
+
"timestamp": datetime.now().isoformat()
|
1089 |
+
},
|
1090 |
+
"frame_detections": [
|
1091 |
+
{
|
1092 |
+
"frame": frame_num,
|
1093 |
+
"timestamp": frame_num / props["fps"],
|
1094 |
+
"objects": [
|
1095 |
+
{
|
1096 |
+
"keyword": kw,
|
1097 |
+
"bbox": list(box), # Convert numpy array to list if needed
|
1098 |
+
"track_id": track_id if len(detection) == 3 else None
|
1099 |
+
}
|
1100 |
+
for detection in filtered_ad_detections.get(frame_num, [])
|
1101 |
+
for box, kw, *track_id in [detection] # Unpack detection tuple, track_id will be empty list if not present
|
1102 |
+
]
|
1103 |
+
}
|
1104 |
+
for frame_num in range(props["frame_count"] if not test_mode else min(int(props["fps"] * test_duration), props["frame_count"]))
|
1105 |
+
]
|
1106 |
+
}
|
1107 |
+
|
1108 |
+
# Save filtered data
|
1109 |
+
outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs")
|
1110 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
1111 |
+
base_name = os.path.splitext(os.path.basename(video_path))[0]
|
1112 |
+
json_path = os.path.join(outputs_dir, f"{box_style}_{target_object}_{base_name}_detections.json")
|
1113 |
+
|
1114 |
+
from persistence import save_detection_data
|
1115 |
+
if not save_detection_data(detection_data, json_path):
|
1116 |
+
print("Warning: Failed to save detection data")
|
1117 |
+
|
1118 |
+
# Create video with filtered data
|
1119 |
+
output_path = create_detection_video(
|
1120 |
+
video_path,
|
1121 |
+
filtered_ad_detections,
|
1122 |
+
target_object,
|
1123 |
+
model,
|
1124 |
+
ffmpeg_preset=ffmpeg_preset,
|
1125 |
+
test_mode=test_mode,
|
1126 |
+
test_duration=test_duration,
|
1127 |
+
box_style=box_style,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
if output_path is None:
|
1131 |
+
print("\nError: Failed to create output video")
|
1132 |
+
return None
|
1133 |
+
|
1134 |
+
print(f"\nOutput saved to: {output_path}")
|
1135 |
+
print(f"Detection data saved to: {json_path}")
|
1136 |
+
return output_path
|
1137 |
+
|
1138 |
+
except Exception as e:
|
1139 |
+
print(f"Error processing video: {str(e)}")
|
1140 |
+
import traceback
|
1141 |
+
traceback.print_exc()
|
1142 |
+
return None
|
1143 |
+
|
1144 |
+
|
1145 |
+
def main():
|
1146 |
+
"""Process all videos in the inputs directory."""
|
1147 |
+
parser = argparse.ArgumentParser(
|
1148 |
+
description="Detect objects in videos using Moondream2"
|
1149 |
+
)
|
1150 |
+
parser.add_argument(
|
1151 |
+
"--test", action="store_true", help="Process only first 3 seconds of each video"
|
1152 |
+
)
|
1153 |
+
parser.add_argument(
|
1154 |
+
"--test-duration",
|
1155 |
+
type=int,
|
1156 |
+
default=DEFAULT_TEST_MODE_DURATION,
|
1157 |
+
help=f"Number of seconds to process in test mode (default: {DEFAULT_TEST_MODE_DURATION})"
|
1158 |
+
)
|
1159 |
+
parser.add_argument(
|
1160 |
+
"--preset",
|
1161 |
+
choices=FFMPEG_PRESETS,
|
1162 |
+
default="medium",
|
1163 |
+
help="FFmpeg encoding preset (default: medium). Faster presets = lower quality",
|
1164 |
+
)
|
1165 |
+
parser.add_argument(
|
1166 |
+
"--detect",
|
1167 |
+
type=str,
|
1168 |
+
default="face",
|
1169 |
+
help='Object to detect in the video (default: face, use --detect "thing to detect" to override)',
|
1170 |
+
)
|
1171 |
+
parser.add_argument(
|
1172 |
+
"--rows",
|
1173 |
+
type=int,
|
1174 |
+
default=1,
|
1175 |
+
help="Number of rows to split each frame into (default: 1)",
|
1176 |
+
)
|
1177 |
+
parser.add_argument(
|
1178 |
+
"--cols",
|
1179 |
+
type=int,
|
1180 |
+
default=1,
|
1181 |
+
help="Number of columns to split each frame into (default: 1)",
|
1182 |
+
)
|
1183 |
+
parser.add_argument(
|
1184 |
+
"--box-style",
|
1185 |
+
choices=["censor", "bounding-box", "hitmarker", "sam", "sam-fast", "fuzzy-blur",
|
1186 |
+
"pixelated-blur", "intense-pixelated-blur", "obfuscated-pixel"],
|
1187 |
+
default="censor",
|
1188 |
+
help="Style of detection visualization (default: censor)",
|
1189 |
+
)
|
1190 |
+
args = parser.parse_args()
|
1191 |
+
|
1192 |
+
input_dir = "inputs"
|
1193 |
+
os.makedirs(input_dir, exist_ok=True)
|
1194 |
+
os.makedirs("outputs", exist_ok=True)
|
1195 |
+
|
1196 |
+
video_files = [
|
1197 |
+
f
|
1198 |
+
for f in os.listdir(input_dir)
|
1199 |
+
if f.lower().endswith((".mp4", ".avi", ".mov", ".mkv", ".webm"))
|
1200 |
+
]
|
1201 |
+
|
1202 |
+
if not video_files:
|
1203 |
+
print("No video files found in 'inputs' directory")
|
1204 |
+
return
|
1205 |
+
|
1206 |
+
print(f"Found {len(video_files)} videos to process")
|
1207 |
+
print(f"Will detect: {args.detect}")
|
1208 |
+
if args.test:
|
1209 |
+
print("Running in test mode - processing only first 3 seconds of each video")
|
1210 |
+
print(f"Using FFmpeg preset: {args.preset}")
|
1211 |
+
print(f"Grid size: {args.rows}x{args.cols}")
|
1212 |
+
print(f"Box style: {args.box_style}")
|
1213 |
+
|
1214 |
+
success_count = 0
|
1215 |
+
for video_file in video_files:
|
1216 |
+
video_path = os.path.join(input_dir, video_file)
|
1217 |
+
output_path = process_video(
|
1218 |
+
video_path,
|
1219 |
+
args.detect,
|
1220 |
+
test_mode=args.test,
|
1221 |
+
test_duration=args.test_duration,
|
1222 |
+
ffmpeg_preset=args.preset,
|
1223 |
+
grid_rows=args.rows,
|
1224 |
+
grid_cols=args.cols,
|
1225 |
+
box_style=args.box_style,
|
1226 |
+
)
|
1227 |
+
if output_path:
|
1228 |
+
success_count += 1
|
1229 |
+
|
1230 |
+
print(
|
1231 |
+
f"\nProcessing complete. Successfully processed {success_count} out of {len(video_files)} videos."
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
|
1235 |
+
if __name__ == "__main__":
|
1236 |
+
main()
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
libvips
|
2 |
+
ffmpeg
|
persistence.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
def save_detection_data(data, output_file):
|
5 |
+
"""
|
6 |
+
Saves the detection data to a JSON file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
data (dict): The complete detection data structure.
|
10 |
+
output_file (str): Path to the output JSON file.
|
11 |
+
"""
|
12 |
+
try:
|
13 |
+
# Create directory if it doesn't exist
|
14 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
15 |
+
|
16 |
+
with open(output_file, "w") as f:
|
17 |
+
json.dump(data, f, indent=4)
|
18 |
+
print(f"Detection data saved to {output_file}")
|
19 |
+
return True
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error saving data: {str(e)}")
|
22 |
+
return False
|
23 |
+
|
24 |
+
def load_detection_data(input_file):
|
25 |
+
"""
|
26 |
+
Loads the detection data from a JSON file.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
input_file (str): Path to the JSON file.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
dict: The loaded detection data, or None if there was an error.
|
33 |
+
"""
|
34 |
+
try:
|
35 |
+
with open(input_file, "r") as f:
|
36 |
+
return json.load(f)
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error loading data: {str(e)}")
|
39 |
+
return None
|
requirements.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
torch>=2.0.0
|
3 |
+
# if on windows: pip install torch==2.5.1+cu121 torchvision==0.20.1+cu121 --index-url https://download.pytorch.org/whl/cu121
|
4 |
+
transformers>=4.36.0
|
5 |
+
opencv-python>=4.8.0
|
6 |
+
pillow>=10.0.0
|
7 |
+
numpy>=1.24.0
|
8 |
+
tqdm>=4.66.0
|
9 |
+
ffmpeg-python
|
10 |
+
einops
|
11 |
+
pyvips-binary
|
12 |
+
pyvips
|
13 |
+
accelerate
|
14 |
+
# for spaces
|
15 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
16 |
+
spaces
|
17 |
+
# SAM dependencies
|
18 |
+
torchvision>=0.20.1
|
19 |
+
matplotlib>=3.7.0
|
20 |
+
pandas>=2.0.0
|
21 |
+
plotly
|
22 |
+
# DeepSORT dependencies
|
23 |
+
deep-sort-realtime>=1.3.2
|
24 |
+
scikit-learn # Required for deep-sort-realtime
|
25 |
+
# Scene detection dependencies (for intelligent scene-aware tracking)
|
26 |
+
scenedetect[opencv]>=0.6.2 # Provides scene change detection capabilities
|
video_visualization.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import subprocess
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
from tqdm import tqdm
|
9 |
+
from persistence import load_detection_data
|
10 |
+
|
11 |
+
def create_frame_data(json_path):
|
12 |
+
"""Create frame-by-frame detection data for visualization."""
|
13 |
+
try:
|
14 |
+
data = load_detection_data(json_path)
|
15 |
+
if not data:
|
16 |
+
print("No data loaded from JSON file")
|
17 |
+
return None
|
18 |
+
|
19 |
+
if "video_metadata" not in data or "frame_detections" not in data:
|
20 |
+
print("Invalid JSON structure: missing required fields")
|
21 |
+
return None
|
22 |
+
|
23 |
+
# Extract video metadata
|
24 |
+
metadata = data["video_metadata"]
|
25 |
+
if "fps" not in metadata or "total_frames" not in metadata:
|
26 |
+
print("Invalid metadata: missing fps or total_frames")
|
27 |
+
return None
|
28 |
+
|
29 |
+
fps = metadata["fps"]
|
30 |
+
total_frames = metadata["total_frames"]
|
31 |
+
|
32 |
+
# Create frame data
|
33 |
+
frame_counts = {}
|
34 |
+
for frame_data in data["frame_detections"]:
|
35 |
+
if "frame" not in frame_data or "objects" not in frame_data:
|
36 |
+
continue # Skip invalid frame data
|
37 |
+
frame_num = frame_data["frame"]
|
38 |
+
frame_counts[frame_num] = len(frame_data["objects"])
|
39 |
+
|
40 |
+
# Fill in missing frames with 0 detections
|
41 |
+
for frame in range(total_frames):
|
42 |
+
if frame not in frame_counts:
|
43 |
+
frame_counts[frame] = 0
|
44 |
+
|
45 |
+
if not frame_counts:
|
46 |
+
print("No valid frame data found")
|
47 |
+
return None
|
48 |
+
|
49 |
+
# Convert to DataFrame
|
50 |
+
df = pd.DataFrame(list(frame_counts.items()), columns=["frame", "detections"])
|
51 |
+
df["timestamp"] = df["frame"] / fps
|
52 |
+
|
53 |
+
return df, metadata
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error creating frame data: {str(e)}")
|
57 |
+
import traceback
|
58 |
+
traceback.print_exc()
|
59 |
+
return None
|
60 |
+
|
61 |
+
def generate_frame_image(df, frame_num, temp_dir, max_y):
|
62 |
+
"""Generate and save a single frame of the visualization."""
|
63 |
+
# Set the style to dark background
|
64 |
+
plt.style.use('dark_background')
|
65 |
+
|
66 |
+
# Set global font to monospace
|
67 |
+
plt.rcParams['font.family'] = 'monospace'
|
68 |
+
plt.rcParams['font.monospace'] = ['DejaVu Sans Mono']
|
69 |
+
|
70 |
+
plt.figure(figsize=(10, 6))
|
71 |
+
|
72 |
+
# Plot data up to current frame
|
73 |
+
current_data = df[df['frame'] <= frame_num]
|
74 |
+
plt.plot(df['frame'], df['detections'], color='#1a1a1a', alpha=0.5) # Darker background line
|
75 |
+
plt.plot(current_data['frame'], current_data['detections'], color='#00ff41') # Matrix green
|
76 |
+
|
77 |
+
# Add vertical line for current position
|
78 |
+
plt.axvline(x=frame_num, color='#ff0000', linestyle='-', alpha=0.7) # Keep red for position
|
79 |
+
|
80 |
+
# Set consistent axes
|
81 |
+
plt.xlim(0, len(df) - 1)
|
82 |
+
plt.ylim(0, max_y * 1.1) # Add 10% padding
|
83 |
+
|
84 |
+
# Add labels with Matrix green color
|
85 |
+
plt.title(f'FRAME {frame_num:04d} - DETECTIONS OVER TIME', color='#00ff41', pad=20)
|
86 |
+
plt.xlabel('FRAME NUMBER', color='#00ff41')
|
87 |
+
plt.ylabel('NUMBER OF DETECTIONS', color='#00ff41')
|
88 |
+
|
89 |
+
# Add current stats in Matrix green with monospace formatting
|
90 |
+
current_detections = df[df['frame'] == frame_num]['detections'].iloc[0]
|
91 |
+
plt.text(0.02, 0.98, f'CURRENT DETECTIONS: {current_detections:02d}',
|
92 |
+
transform=plt.gca().transAxes, verticalalignment='top',
|
93 |
+
color='#00ff41', family='monospace')
|
94 |
+
|
95 |
+
# Style the grid and ticks
|
96 |
+
plt.grid(True, color='#1a1a1a', linestyle='-', alpha=0.3)
|
97 |
+
plt.tick_params(colors='#00ff41')
|
98 |
+
|
99 |
+
# Save frame
|
100 |
+
frame_path = os.path.join(temp_dir, f'frame_{frame_num:05d}.png')
|
101 |
+
plt.savefig(frame_path, bbox_inches='tight', dpi=100, facecolor='black', edgecolor='none')
|
102 |
+
plt.close()
|
103 |
+
|
104 |
+
return frame_path
|
105 |
+
|
106 |
+
def generate_gauge_frame(df, frame_num, temp_dir, detect_keyword="OBJECT"):
|
107 |
+
"""Generate a modern square-style binary gauge visualization frame."""
|
108 |
+
# Set the style to dark background
|
109 |
+
plt.style.use('dark_background')
|
110 |
+
|
111 |
+
# Set global font to monospace
|
112 |
+
plt.rcParams['font.family'] = 'monospace'
|
113 |
+
plt.rcParams['font.monospace'] = ['DejaVu Sans Mono']
|
114 |
+
|
115 |
+
# Create figure with 16:9 aspect ratio
|
116 |
+
plt.figure(figsize=(16, 9))
|
117 |
+
|
118 |
+
# Get current detection state
|
119 |
+
current_detections = df[df['frame'] == frame_num]['detections'].iloc[0]
|
120 |
+
has_detection = current_detections > 0
|
121 |
+
|
122 |
+
# Create a simple gauge visualization
|
123 |
+
plt.axis('off')
|
124 |
+
|
125 |
+
# Set colors
|
126 |
+
if has_detection:
|
127 |
+
color = '#00ff41' # Matrix green for YES
|
128 |
+
status = 'YES'
|
129 |
+
indicator_pos = 0.8 # Right position
|
130 |
+
else:
|
131 |
+
color = '#ff0000' # Red for NO
|
132 |
+
status = 'NO'
|
133 |
+
indicator_pos = 0.2 # Left position
|
134 |
+
|
135 |
+
# Draw background rectangle
|
136 |
+
background = plt.Rectangle((0.1, 0.3), 0.8, 0.2,
|
137 |
+
facecolor='#1a1a1a',
|
138 |
+
edgecolor='#333333',
|
139 |
+
linewidth=2)
|
140 |
+
plt.gca().add_patch(background)
|
141 |
+
|
142 |
+
# Draw indicator
|
143 |
+
indicator_width = 0.05
|
144 |
+
indicator = plt.Rectangle((indicator_pos - indicator_width/2, 0.25),
|
145 |
+
indicator_width, 0.3,
|
146 |
+
facecolor=color,
|
147 |
+
edgecolor=None)
|
148 |
+
plt.gca().add_patch(indicator)
|
149 |
+
|
150 |
+
# Add tick marks
|
151 |
+
tick_positions = [0.2, 0.5, 0.8] # NO, CENTER, YES
|
152 |
+
for x in tick_positions:
|
153 |
+
plt.plot([x, x], [0.3, 0.5], color='#444444', linewidth=2)
|
154 |
+
|
155 |
+
# Add YES/NO labels
|
156 |
+
plt.text(0.8, 0.2, 'YES', color='#00ff41', fontsize=14,
|
157 |
+
ha='center', va='center', family='monospace')
|
158 |
+
plt.text(0.2, 0.2, 'NO', color='#ff0000', fontsize=14,
|
159 |
+
ha='center', va='center', family='monospace')
|
160 |
+
|
161 |
+
# Add status box at top with detection keyword
|
162 |
+
plt.text(0.5, 0.8, f'{detect_keyword.upper()} DETECTED?', color=color,
|
163 |
+
fontsize=16, ha='center', va='center', family='monospace',
|
164 |
+
bbox=dict(facecolor='#1a1a1a',
|
165 |
+
edgecolor=color,
|
166 |
+
linewidth=2,
|
167 |
+
pad=10))
|
168 |
+
|
169 |
+
# Add frame counter at bottom
|
170 |
+
plt.text(0.5, 0.1, f'FRAME: {frame_num:04d}', color='#00ff41',
|
171 |
+
fontsize=14, ha='center', va='center', family='monospace')
|
172 |
+
|
173 |
+
# Add subtle grid lines for depth
|
174 |
+
for x in np.linspace(0.2, 0.8, 7):
|
175 |
+
plt.plot([x, x], [0.3, 0.5], color='#222222', linewidth=1, zorder=0)
|
176 |
+
|
177 |
+
# Add glow effect to indicator
|
178 |
+
for i in range(3):
|
179 |
+
glow = plt.Rectangle((indicator_pos - (indicator_width + i*0.01)/2,
|
180 |
+
0.25 - i*0.01),
|
181 |
+
indicator_width + i*0.01,
|
182 |
+
0.3 + i*0.02,
|
183 |
+
facecolor=color,
|
184 |
+
alpha=0.1/(i+1))
|
185 |
+
plt.gca().add_patch(glow)
|
186 |
+
|
187 |
+
# Set consistent plot limits
|
188 |
+
plt.xlim(0, 1)
|
189 |
+
plt.ylim(0, 1)
|
190 |
+
|
191 |
+
# Save frame with 16:9 aspect ratio
|
192 |
+
frame_path = os.path.join(temp_dir, f'gauge_{frame_num:05d}.png')
|
193 |
+
plt.savefig(frame_path,
|
194 |
+
bbox_inches='tight',
|
195 |
+
dpi=100,
|
196 |
+
facecolor='black',
|
197 |
+
edgecolor='none',
|
198 |
+
pad_inches=0)
|
199 |
+
plt.close()
|
200 |
+
|
201 |
+
return frame_path
|
202 |
+
|
203 |
+
def create_video_visualization(json_path, style="timeline"):
|
204 |
+
"""Create a video visualization of the detection data."""
|
205 |
+
try:
|
206 |
+
if not json_path:
|
207 |
+
return None, "No JSON file provided"
|
208 |
+
|
209 |
+
if not os.path.exists(json_path):
|
210 |
+
return None, f"File not found: {json_path}"
|
211 |
+
|
212 |
+
# Load and process data
|
213 |
+
result = create_frame_data(json_path)
|
214 |
+
if result is None:
|
215 |
+
return None, "Failed to load detection data from JSON file"
|
216 |
+
|
217 |
+
frame_data, metadata = result
|
218 |
+
if len(frame_data) == 0:
|
219 |
+
return None, "No frame data found in JSON file"
|
220 |
+
|
221 |
+
total_frames = metadata["total_frames"]
|
222 |
+
detect_keyword = metadata.get("detect_keyword", "OBJECT") # Get the detection keyword
|
223 |
+
|
224 |
+
# Create temporary directory for frames
|
225 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
226 |
+
max_y = frame_data['detections'].max()
|
227 |
+
|
228 |
+
# Generate each frame
|
229 |
+
print("Generating frames...")
|
230 |
+
frame_paths = []
|
231 |
+
with tqdm(total=total_frames, desc="Generating frames") as pbar:
|
232 |
+
for frame in range(total_frames):
|
233 |
+
try:
|
234 |
+
if style == "gauge":
|
235 |
+
frame_path = generate_gauge_frame(frame_data, frame, temp_dir, detect_keyword)
|
236 |
+
else: # default to timeline
|
237 |
+
frame_path = generate_frame_image(frame_data, frame, temp_dir, max_y)
|
238 |
+
if frame_path and os.path.exists(frame_path):
|
239 |
+
frame_paths.append(frame_path)
|
240 |
+
else:
|
241 |
+
print(f"Warning: Failed to generate frame {frame}")
|
242 |
+
pbar.update(1)
|
243 |
+
except Exception as e:
|
244 |
+
print(f"Error generating frame {frame}: {str(e)}")
|
245 |
+
continue
|
246 |
+
|
247 |
+
if not frame_paths:
|
248 |
+
return None, "Failed to generate any frames"
|
249 |
+
|
250 |
+
# Create output video path
|
251 |
+
output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs")
|
252 |
+
os.makedirs(output_dir, exist_ok=True)
|
253 |
+
output_video = os.path.join(output_dir, f"detection_visualization_{style}.mp4")
|
254 |
+
|
255 |
+
# Create temp output path
|
256 |
+
base, ext = os.path.splitext(output_video)
|
257 |
+
temp_output = f"{base}_temp{ext}"
|
258 |
+
|
259 |
+
# First pass: Create video with OpenCV VideoWriter
|
260 |
+
print("Creating initial video...")
|
261 |
+
# Get frame size from first image
|
262 |
+
first_frame = cv2.imread(frame_paths[0])
|
263 |
+
height, width = first_frame.shape[:2]
|
264 |
+
|
265 |
+
out = cv2.VideoWriter(
|
266 |
+
temp_output,
|
267 |
+
cv2.VideoWriter_fourcc(*"mp4v"),
|
268 |
+
metadata["fps"],
|
269 |
+
(width, height)
|
270 |
+
)
|
271 |
+
|
272 |
+
with tqdm(total=total_frames, desc="Creating video") as pbar: # Use total_frames here too
|
273 |
+
for frame_path in frame_paths:
|
274 |
+
frame = cv2.imread(frame_path)
|
275 |
+
out.write(frame)
|
276 |
+
pbar.update(1)
|
277 |
+
|
278 |
+
out.release()
|
279 |
+
|
280 |
+
# Second pass: Convert to web-compatible format
|
281 |
+
print("Converting to web format...")
|
282 |
+
try:
|
283 |
+
subprocess.run(
|
284 |
+
[
|
285 |
+
"ffmpeg",
|
286 |
+
"-y",
|
287 |
+
"-i",
|
288 |
+
temp_output,
|
289 |
+
"-c:v",
|
290 |
+
"libx264",
|
291 |
+
"-preset",
|
292 |
+
"medium",
|
293 |
+
"-crf",
|
294 |
+
"23",
|
295 |
+
"-movflags",
|
296 |
+
"+faststart", # Better web playback
|
297 |
+
"-loglevel",
|
298 |
+
"error",
|
299 |
+
output_video,
|
300 |
+
],
|
301 |
+
check=True,
|
302 |
+
)
|
303 |
+
|
304 |
+
os.remove(temp_output) # Remove the temporary file
|
305 |
+
|
306 |
+
if not os.path.exists(output_video):
|
307 |
+
print(f"Warning: FFmpeg completed but output file not found at {output_video}")
|
308 |
+
return None, "Failed to create video"
|
309 |
+
|
310 |
+
# Return video path and stats
|
311 |
+
stats = f"""Video Stats:
|
312 |
+
FPS: {metadata['fps']}
|
313 |
+
Total Frames: {metadata['total_frames']}
|
314 |
+
Duration: {metadata['duration_sec']:.2f} seconds
|
315 |
+
Max Detections in a Frame: {frame_data['detections'].max()}
|
316 |
+
Average Detections per Frame: {frame_data['detections'].mean():.2f}"""
|
317 |
+
|
318 |
+
return output_video, stats
|
319 |
+
|
320 |
+
except subprocess.CalledProcessError as e:
|
321 |
+
print(f"Error running FFmpeg: {str(e)}")
|
322 |
+
if os.path.exists(temp_output):
|
323 |
+
os.remove(temp_output)
|
324 |
+
return None, f"Error creating visualization: {str(e)}"
|
325 |
+
|
326 |
+
except Exception as e:
|
327 |
+
print(f"Error creating video visualization: {str(e)}")
|
328 |
+
import traceback
|
329 |
+
traceback.print_exc()
|
330 |
+
return None, f"Error creating visualization: {str(e)}"
|
visualization.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from persistence import load_detection_data
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
def visualize_detections(json_path):
|
7 |
+
"""
|
8 |
+
Visualize detection data from a JSON file.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
json_path (str): Path to the JSON file containing detection data.
|
12 |
+
"""
|
13 |
+
# Load the persisted JSON data
|
14 |
+
data = load_detection_data(json_path)
|
15 |
+
if not data:
|
16 |
+
return
|
17 |
+
|
18 |
+
# Convert the frame detections to a DataFrame
|
19 |
+
rows = []
|
20 |
+
for frame_data in data["frame_detections"]:
|
21 |
+
frame = frame_data["frame"]
|
22 |
+
timestamp = frame_data["timestamp"]
|
23 |
+
for obj in frame_data["objects"]:
|
24 |
+
rows.append({
|
25 |
+
"frame": frame,
|
26 |
+
"timestamp": timestamp,
|
27 |
+
"keyword": obj["keyword"],
|
28 |
+
"x1": obj["bbox"][0],
|
29 |
+
"y1": obj["bbox"][1],
|
30 |
+
"x2": obj["bbox"][2],
|
31 |
+
"y2": obj["bbox"][3],
|
32 |
+
"area": (obj["bbox"][2] - obj["bbox"][0]) * (obj["bbox"][3] - obj["bbox"][1])
|
33 |
+
})
|
34 |
+
|
35 |
+
if not rows:
|
36 |
+
print("No detections found in the data")
|
37 |
+
return
|
38 |
+
|
39 |
+
df = pd.DataFrame(rows)
|
40 |
+
|
41 |
+
# Create a figure with multiple subplots
|
42 |
+
fig = plt.figure(figsize=(15, 10))
|
43 |
+
|
44 |
+
# Plot 1: Number of detections per frame
|
45 |
+
plt.subplot(2, 2, 1)
|
46 |
+
detections_per_frame = df.groupby("frame").size()
|
47 |
+
plt.plot(detections_per_frame.index, detections_per_frame.values)
|
48 |
+
plt.xlabel("Frame")
|
49 |
+
plt.ylabel("Number of Detections")
|
50 |
+
plt.title("Detections Per Frame")
|
51 |
+
|
52 |
+
# Plot 2: Distribution of detection areas
|
53 |
+
plt.subplot(2, 2, 2)
|
54 |
+
df["area"].hist(bins=30)
|
55 |
+
plt.xlabel("Detection Area (normalized)")
|
56 |
+
plt.ylabel("Count")
|
57 |
+
plt.title("Distribution of Detection Areas")
|
58 |
+
|
59 |
+
# Plot 3: Average detection area over time
|
60 |
+
plt.subplot(2, 2, 3)
|
61 |
+
avg_area = df.groupby("frame")["area"].mean()
|
62 |
+
plt.plot(avg_area.index, avg_area.values)
|
63 |
+
plt.xlabel("Frame")
|
64 |
+
plt.ylabel("Average Detection Area")
|
65 |
+
plt.title("Average Detection Area Over Time")
|
66 |
+
|
67 |
+
# Plot 4: Heatmap of detection centers
|
68 |
+
plt.subplot(2, 2, 4)
|
69 |
+
df["center_x"] = (df["x1"] + df["x2"]) / 2
|
70 |
+
df["center_y"] = (df["y1"] + df["y2"]) / 2
|
71 |
+
plt.hist2d(df["center_x"], df["center_y"], bins=30)
|
72 |
+
plt.colorbar()
|
73 |
+
plt.xlabel("X Position")
|
74 |
+
plt.ylabel("Y Position")
|
75 |
+
plt.title("Detection Center Heatmap")
|
76 |
+
|
77 |
+
# Adjust layout and display
|
78 |
+
plt.tight_layout()
|
79 |
+
plt.show()
|
80 |
+
|
81 |
+
# Print summary statistics
|
82 |
+
print("\nSummary Statistics:")
|
83 |
+
print(f"Total frames analyzed: {len(data['frame_detections'])}")
|
84 |
+
print(f"Total detections: {len(df)}")
|
85 |
+
print(f"Average detections per frame: {len(df) / len(data['frame_detections']):.2f}")
|
86 |
+
print(f"\nVideo metadata:")
|
87 |
+
for key, value in data["video_metadata"].items():
|
88 |
+
print(f"{key}: {value}")
|
89 |
+
|
90 |
+
def main():
|
91 |
+
parser = argparse.ArgumentParser(description="Visualize object detection data")
|
92 |
+
parser.add_argument("json_file", help="Path to the JSON file containing detection data")
|
93 |
+
args = parser.parse_args()
|
94 |
+
|
95 |
+
visualize_detections(args.json_file)
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
main()
|