ParsaKhaz's picture
Upload folder using huggingface_hub
5f5e577 verified
#!/usr/bin/env python3
import cv2, os, subprocess, argparse
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, SamModel, SamProcessor
from tqdm import tqdm
import numpy as np
from datetime import datetime
from deep_sort_integration import DeepSORTTracker
from scenedetect import detect, ContentDetector
from functools import lru_cache
# Constants
DEFAULT_TEST_MODE_DURATION = 3 # Process only first 3 seconds in test mode by default
FFMPEG_PRESETS = [
"ultrafast",
"superfast",
"veryfast",
"faster",
"fast",
"medium",
"slow",
"slower",
"veryslow",
]
FONT = cv2.FONT_HERSHEY_SIMPLEX # Font for bounding-box-style labels
# Detection parameters
IOU_THRESHOLD = 0.5 # IoU threshold for considering boxes related
# Hitmarker parameters
HITMARKER_SIZE = 20 # Size of the hitmarker in pixels
HITMARKER_GAP = 3 # Size of the empty space in the middle (reduced from 8)
HITMARKER_THICKNESS = 2 # Thickness of hitmarker lines
HITMARKER_COLOR = (255, 255, 255) # White color for hitmarker
HITMARKER_SHADOW_COLOR = (80, 80, 80) # Lighter gray for shadow effect
HITMARKER_SHADOW_OFFSET = 1 # Smaller shadow offset
# SAM parameters
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize model variables as None
sam_model = None
sam_processor = None
slimsam_model = None
slimsam_processor = None
@lru_cache(maxsize=2) # Cache both regular and slim SAM models
def get_sam_model(slim=False):
"""Get cached SAM model and processor."""
global sam_model, sam_processor, slimsam_model, slimsam_processor
if slim:
if slimsam_model is None:
print("Loading SlimSAM model for the first time...")
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to(device)
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
return slimsam_model, slimsam_processor
else:
if sam_model is None:
print("Loading SAM model for the first time...")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
return sam_model, sam_processor
def load_sam_model(slim=False):
"""Load SAM model and processor with caching."""
return get_sam_model(slim=slim)
def generate_color_pair():
"""Generate a generic light blue and dark blue color pair for SAM visualization."""
dark_rgb = [0, 0, 139] # Dark blue
light_rgb = [173, 216, 230] # Light blue
return dark_rgb, light_rgb
def create_mask_overlay(image, masks, points=None, labels=None):
"""Create a mask overlay with contours for multiple SAM visualizations.
Args:
image: PIL Image to overlay masks on
masks: List of binary masks or single mask
points: Optional list of (x,y) points for labels
labels: Optional list of label strings for each point
"""
# Convert single mask to list for uniform processing
if not isinstance(masks, list):
masks = [masks]
# Create empty overlays
overlay = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
outline = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
# Process each mask
for i, mask in enumerate(masks):
# Convert binary mask to uint8
mask_uint8 = (mask > 0).astype(np.uint8)
# Dilation to fill gaps
kernel = np.ones((5, 5), np.uint8)
mask_dilated = cv2.dilate(mask_uint8, kernel, iterations=1)
# Find contours of the dilated mask
contours, _ = cv2.findContours(mask_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Generate random color pair for this segmentation
dark_color, light_color = generate_color_pair()
# Add to the overlays
overlay[mask_dilated > 0] = [*light_color, 90] # Light color with 35% opacity
cv2.drawContours(outline, contours, -1, (*dark_color, 255), 2) # Dark color outline
# Convert to PIL images
mask_overlay = Image.fromarray(overlay, 'RGBA')
outline_overlay = Image.fromarray(outline, 'RGBA')
# Composite the layers
result = image.convert('RGBA')
result.paste(mask_overlay, (0, 0), mask_overlay)
result.paste(outline_overlay, (0, 0), outline_overlay)
# Add labels if provided
if points and labels:
result_array = np.array(result)
for (x, y), label in zip(points, labels):
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
cv2.putText(
result_array,
label,
(int(x - label_size[0] // 2), int(y - 20)),
FONT,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
result = Image.fromarray(result_array)
return result
def process_sam_detection(image, center_x, center_y, slim=False):
"""Process a single detection point with SAM.
Returns:
tuple: (mask, result_pil) where mask is the binary mask and result_pil is the visualization
"""
if not isinstance(image, Image.Image):
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Get appropriate model from cache
model, processor = get_sam_model(slim)
# Process the image with SAM
inputs = processor(
image,
input_points=[[[center_x, center_y]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = model(**inputs)
mask = processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
# Create the visualization
result = create_mask_overlay(image, mask)
return mask, result
def load_moondream():
"""Load Moondream model and tokenizer."""
model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
)
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
return model, tokenizer
def get_video_properties(video_path):
"""Get basic video properties."""
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
return {"fps": fps, "frame_count": frame_count, "width": width, "height": height}
def is_valid_bounding_box(bounding_box):
"""Check if bounding box coordinates are reasonable."""
x1, y1, x2, y2 = bounding_box
width = x2 - x1
height = y2 - y1
# Reject boxes that are too large (over 90% of frame in both dimensions)
if width > 0.9 and height > 0.9:
return False
# Reject boxes that are too small (less than 1% of frame)
if width < 0.01 or height < 0.01:
return False
return True
def split_frame_into_grid(frame, grid_rows, grid_cols):
"""Split a frame into a grid of tiles."""
height, width = frame.shape[:2]
tile_height = height // grid_rows
tile_width = width // grid_cols
tiles = []
tile_positions = []
for i in range(grid_rows):
for j in range(grid_cols):
y1 = i * tile_height
y2 = (i + 1) * tile_height if i < grid_rows - 1 else height
x1 = j * tile_width
x2 = (j + 1) * tile_width if j < grid_cols - 1 else width
tile = frame[y1:y2, x1:x2]
tiles.append(tile)
tile_positions.append((x1, y1, x2, y2))
return tiles, tile_positions
def convert_tile_coords_to_frame(box, tile_pos, frame_shape):
"""Convert coordinates from tile space to frame space."""
frame_height, frame_width = frame_shape[:2]
tile_x1, tile_y1, tile_x2, tile_y2 = tile_pos
tile_width = tile_x2 - tile_x1
tile_height = tile_y2 - tile_y1
x1_tile_abs = box[0] * tile_width
y1_tile_abs = box[1] * tile_height
x2_tile_abs = box[2] * tile_width
y2_tile_abs = box[3] * tile_height
x1_frame_abs = tile_x1 + x1_tile_abs
y1_frame_abs = tile_y1 + y1_tile_abs
x2_frame_abs = tile_x1 + x2_tile_abs
y2_frame_abs = tile_y1 + y2_tile_abs
x1_norm = x1_frame_abs / frame_width
y1_norm = y1_frame_abs / frame_height
x2_norm = x2_frame_abs / frame_width
y2_norm = y2_frame_abs / frame_height
x1_norm = max(0.0, min(1.0, x1_norm))
y1_norm = max(0.0, min(1.0, y1_norm))
x2_norm = max(0.0, min(1.0, x2_norm))
y2_norm = max(0.0, min(1.0, y2_norm))
return [x1_norm, y1_norm, x2_norm, y2_norm]
def merge_tile_detections(tile_detections, iou_threshold=0.5):
"""Merge detections from different tiles using NMS-like approach."""
if not tile_detections:
return []
all_boxes = []
all_keywords = []
# Collect all boxes and their keywords
for detections in tile_detections:
for box, keyword in detections:
all_boxes.append(box)
all_keywords.append(keyword)
if not all_boxes:
return []
# Convert to numpy for easier processing
boxes = np.array(all_boxes)
# Calculate areas
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1) * (y2 - y1)
# Sort boxes by area
order = areas.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if order.size == 1:
break
# Calculate IoU with rest of boxes
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# Get indices of boxes with IoU less than threshold
inds = np.where(ovr <= iou_threshold)[0]
order = order[inds + 1]
return [(all_boxes[i], all_keywords[i]) for i in keep]
def detect_objects_in_frame(model, tokenizer, image, target_object, grid_rows=1, grid_cols=1):
"""Detect specified objects in a frame using grid-based analysis."""
if grid_rows == 1 and grid_cols == 1:
return detect_objects_in_frame_single(model, tokenizer, image, target_object)
# Convert numpy array to PIL Image if needed
if not isinstance(image, Image.Image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Split frame into tiles
tiles, tile_positions = split_frame_into_grid(image, grid_rows, grid_cols)
# Process each tile
tile_detections = []
for tile, tile_pos in zip(tiles, tile_positions):
# Convert tile to PIL Image
tile_pil = Image.fromarray(tile)
# Detect objects in tile
response = model.detect(tile_pil, target_object)
if response and "objects" in response and response["objects"]:
objects = response["objects"]
tile_objects = []
for obj in objects:
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
if is_valid_bounding_box(box):
# Convert tile coordinates to frame coordinates
frame_box = convert_tile_coords_to_frame(
box, tile_pos, image.shape
)
tile_objects.append((frame_box, target_object))
if tile_objects: # Only append if we found valid objects
tile_detections.append(tile_objects)
# Merge detections from all tiles
merged_detections = merge_tile_detections(tile_detections)
return merged_detections
def detect_objects_in_frame_single(model, tokenizer, image, target_object):
"""Single-frame detection function."""
detected_objects = []
# Convert numpy array to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Detect objects
response = model.detect(image, target_object)
# Check if we have valid objects
if response and "objects" in response and response["objects"]:
objects = response["objects"]
for obj in objects:
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
# If box is valid (not full-frame), add it
if is_valid_bounding_box(box):
detected_objects.append((box, target_object))
return detected_objects
def draw_hitmarker(
frame, center_x, center_y, size=HITMARKER_SIZE, color=HITMARKER_COLOR, shadow=True
):
"""Draw a COD-style hitmarker cross with more space in the middle."""
half_size = size // 2
# Draw shadow first if enabled
if shadow:
# Top-left to center shadow
cv2.line(
frame,
(
center_x - half_size + HITMARKER_SHADOW_OFFSET,
center_y - half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Top-right to center shadow
cv2.line(
frame,
(
center_x + half_size + HITMARKER_SHADOW_OFFSET,
center_y - half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Bottom-left to center shadow
cv2.line(
frame,
(
center_x - half_size + HITMARKER_SHADOW_OFFSET,
center_y + half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Bottom-right to center shadow
cv2.line(
frame,
(
center_x + half_size + HITMARKER_SHADOW_OFFSET,
center_y + half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Draw main hitmarker
# Top-left to center
cv2.line(
frame,
(center_x - half_size, center_y - half_size),
(center_x - HITMARKER_GAP, center_y - HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Top-right to center
cv2.line(
frame,
(center_x + half_size, center_y - half_size),
(center_x + HITMARKER_GAP, center_y - HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Bottom-left to center
cv2.line(
frame,
(center_x - half_size, center_y + half_size),
(center_x - HITMARKER_GAP, center_y + HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Bottom-right to center
cv2.line(
frame,
(center_x + half_size, center_y + half_size),
(center_x + HITMARKER_GAP, center_y + HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
def draw_ad_boxes(frame, detected_objects, detect_keyword, model, box_style="censor"):
height, width = frame.shape[:2]
points = []
# Only get points if we need them for hitmarker or SAM styles
if box_style in ["hitmarker", "sam", "sam-fast"]:
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
try:
point_response = model.point(frame_pil, detect_keyword)
if isinstance(point_response, dict) and 'points' in point_response:
points = point_response['points']
except Exception as e:
print(f"Error during point detection: {str(e)}")
points = []
# Only load SAM models and process points if we're using SAM styles and have points
if box_style in ["sam", "sam-fast"] and points:
# Start with the original PIL image
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Collect all masks and points
all_masks = []
point_coords = []
point_labels = []
for point in points:
try:
center_x = int(float(point["x"]) * width)
center_y = int(float(point["y"]) * height)
# Get mask and visualization
mask, _ = process_sam_detection(frame_pil, center_x, center_y, slim=(box_style == "sam-fast"))
# Collect mask and point data
all_masks.append(mask)
point_coords.append((center_x, center_y))
point_labels.append(detect_keyword)
except Exception as e:
print(f"Error processing individual SAM point: {str(e)}")
print(f"Point data: {point}")
if all_masks:
# Create final visualization with all masks
result_pil = create_mask_overlay(frame_pil, all_masks, point_coords, point_labels)
frame = cv2.cvtColor(np.array(result_pil), cv2.COLOR_RGB2BGR)
# Process other visualization styles
for detection in detected_objects:
try:
# Handle both tracked and untracked detections
if len(detection) == 3: # Tracked detection with ID
box, keyword, track_id = detection
else: # Regular detection without tracking
box, keyword = detection
track_id = None
x1 = int(box[0] * width)
y1 = int(box[1] * height)
x2 = int(box[2] * width)
y2 = int(box[3] * height)
x1 = max(0, min(x1, width - 1))
y1 = max(0, min(y1, height - 1))
x2 = max(0, min(x2, width - 1))
y2 = max(0, min(y2, height - 1))
if x2 > x1 and y2 > y1:
if box_style == "censor":
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), -1)
elif box_style == "bounding-box":
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
label = f"{detect_keyword}" if track_id is not None else detect_keyword
label_size = cv2.getTextSize(label, FONT, 0.7, 2)[0]
cv2.rectangle(
frame, (x1, y1 - 25), (x1 + label_size[0], y1), (0, 0, 255), -1
)
cv2.putText(
frame,
label,
(x1, y1 - 6),
FONT,
0.7,
(255, 255, 255),
2,
cv2.LINE_AA,
)
elif box_style == "fuzzy-blur":
# Extract ROI
roi = frame[y1:y2, x1:x2]
# Apply Gaussian blur with much larger kernel for intense blur
blurred_roi = cv2.GaussianBlur(roi, (125, 125), 0)
# Replace original ROI with blurred version
frame[y1:y2, x1:x2] = blurred_roi
elif box_style == "pixelated-blur":
# Extract ROI
roi = frame[y1:y2, x1:x2]
# Pixelate by resizing down and up
h, w = roi.shape[:2]
temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
# Mix up the pixelated frame slightly by adding random noise
noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
pixelated = cv2.add(pixelated, noise)
# Apply stronger Gaussian blur to smooth edges
blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
# Replace original ROI
frame[y1:y2, x1:x2] = blurred_pixelated
elif box_style == "obfuscated-pixel":
# Calculate expansion amount based on 10% of object dimensions
box_width = x2 - x1
box_height = y2 - y1
expand_x = int(box_width * 0.10)
expand_y = int(box_height * 0.10)
# Expand the bounding box by 10% in all directions
x1_expanded = max(0, x1 - expand_x)
y1_expanded = max(0, y1 - expand_y)
x2_expanded = min(width - 1, x2 + expand_x)
y2_expanded = min(height - 1, y2 + expand_y)
# Extract ROI with much larger padding for true background sampling
padding = 100 # Much larger padding to get true background
y1_pad = max(0, y1_expanded - padding)
y2_pad = min(height, y2_expanded + padding)
x1_pad = max(0, x1_expanded - padding)
x2_pad = min(width, x2_expanded + padding)
# Get the padded region including background
padded_roi = frame[y1_pad:y2_pad, x1_pad:x2_pad]
# Create mask that excludes a larger region around the detection
h, w = y2_expanded - y1_expanded, x2_expanded - x1_expanded
bg_mask = np.ones(padded_roi.shape[:2], dtype=bool)
# Exclude a larger region around the detection from background sampling
exclusion_padding = 50 # Area to exclude around detection
exclude_y1 = padding - exclusion_padding
exclude_y2 = padding + h + exclusion_padding
exclude_x1 = padding - exclusion_padding
exclude_x2 = padding + w + exclusion_padding
# Make sure exclusion coordinates are valid
exclude_y1 = max(0, exclude_y1)
exclude_y2 = min(padded_roi.shape[0], exclude_y2)
exclude_x1 = max(0, exclude_x1)
exclude_x2 = min(padded_roi.shape[1], exclude_x2)
# Mark the exclusion zone in the mask
bg_mask[exclude_y1:exclude_y2, exclude_x1:exclude_x2] = False
# If we have enough background pixels, calculate average color
if np.any(bg_mask):
bg_color = np.mean(padded_roi[bg_mask], axis=0).astype(np.uint8)
else:
# Fallback to edges if we couldn't get enough background
edge_samples = np.concatenate([
padded_roi[0], # Top edge
padded_roi[-1], # Bottom edge
padded_roi[:, 0], # Left edge
padded_roi[:, -1] # Right edge
])
bg_color = np.mean(edge_samples, axis=0).astype(np.uint8)
# Create base pixelated version (of the expanded region)
temp = cv2.resize(frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded],
(6, 6), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
# Blend heavily towards background color
blend_factor = 0.9 # Much stronger blend with background
blended = cv2.addWeighted(
pixelated, 1 - blend_factor,
np.full((h, w, 3), bg_color, dtype=np.uint8), blend_factor,
0
)
# Replace original ROI with blended version (using expanded coordinates)
frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blended
elif box_style == "intense-pixelated-blur":
# Expand the bounding box by pixels in all directions
x1_expanded = max(0, x1 - 15)
y1_expanded = max(0, y1 - 15)
x2_expanded = min(width - 1, x2 + 25)
y2_expanded = min(height - 1, y2 + 25)
# Extract ROI
roi = frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded]
# Pixelate by resizing down and up
h, w = roi.shape[:2]
temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
# Mix up the pixelated frame slightly by adding random noise
noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
pixelated = cv2.add(pixelated, noise)
# Apply stronger Gaussian blur to smooth edges
blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
# Replace original ROI
frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blurred_pixelated
elif box_style == "hitmarker":
if points:
for point in points:
try:
print(f"Processing point: {point}")
center_x = int(float(point["x"]) * width)
center_y = int(float(point["y"]) * height)
print(f"Converted coordinates: ({center_x}, {center_y})")
draw_hitmarker(frame, center_x, center_y)
label = f"{detect_keyword}" if track_id is not None else detect_keyword
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
cv2.putText(
frame,
label,
(center_x - label_size[0] // 2, center_y - HITMARKER_SIZE - 5),
FONT,
0.5,
HITMARKER_COLOR,
1,
cv2.LINE_AA,
)
except Exception as e:
print(f"Error processing individual point: {str(e)}")
print(f"Point data: {point}")
elif box_style == "magnify":
# Calculate the center point of the detection
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Calculate original dimensions
orig_width = x2 - x1
orig_height = y2 - y1
# Calculate new dimensions using magnify_factor parameter
magnify_factor = getattr(model, "magnify_factor", 2.0) # Default to 2x if not specified
new_width = int(orig_width * magnify_factor)
new_height = int(orig_height * magnify_factor)
# Calculate new coordinates ensuring they stay within frame bounds
new_x1 = max(0, center_x - new_width // 2)
new_y1 = max(0, center_y - new_height // 2)
new_x2 = min(width - 1, new_x1 + new_width)
new_y2 = min(height - 1, new_y1 + new_height)
# Extract the original ROI
roi = frame[y1:y2, x1:x2]
# Resize the ROI using the magnify_factor
enlarged_roi = cv2.resize(roi, (new_x2 - new_x1, new_y2 - new_y1))
# Create a mask for smooth blending
mask = np.zeros((new_y2 - new_y1, new_x2 - new_x1), dtype=np.float32)
cv2.rectangle(mask, (0, 0), (new_x2 - new_x1, new_y2 - new_y1), 1, -1)
mask = cv2.GaussianBlur(mask, (21, 21), 11)
# Blend the enlarged ROI with the original frame
for c in range(3): # For each color channel
frame[new_y1:new_y2, new_x1:new_x2, c] = (
frame[new_y1:new_y2, new_x1:new_x2, c] * (1 - mask) +
enlarged_roi[:, :, c] * mask
)
except Exception as e:
print(f"Error drawing {box_style} style box: {str(e)}")
print(f"Box data: {box}")
print(f"Keyword: {keyword}")
return frame
def filter_temporal_outliers(detections_dict):
"""Filter out extremely large detections that take up most of the frame.
Only keeps detections that are reasonable in size.
Args:
detections_dict: Dictionary of {frame_number: [(box, keyword, track_id), ...]}
"""
filtered_detections = {}
for t, detections in detections_dict.items():
# Only keep detections that aren't too large
valid_detections = []
for detection in detections:
# Handle both tracked and untracked detections
if len(detection) == 3: # Tracked detection with ID
box, keyword, track_id = detection
else: # Regular detection without tracking
box, keyword = detection
track_id = None
# Calculate box size as percentage of frame
width = box[2] - box[0]
height = box[3] - box[1]
area = width * height
# If box is less than 90% of frame, keep it
if area < 0.9:
if track_id is not None:
valid_detections.append((box, keyword, track_id))
else:
valid_detections.append((box, keyword))
if valid_detections:
filtered_detections[t] = valid_detections
return filtered_detections
def describe_frames(video_path, model, tokenizer, detect_keyword, test_mode=False, test_duration=DEFAULT_TEST_MODE_DURATION, grid_rows=1, grid_cols=1):
"""Extract and detect objects in frames."""
props = get_video_properties(video_path)
fps = props["fps"]
# Initialize DeepSORT tracker
tracker = DeepSORTTracker()
# If in test mode, only process first N seconds
if test_mode:
frame_count = min(int(fps * test_duration), props["frame_count"])
else:
frame_count = props["frame_count"]
ad_detections = {} # Store detection results by frame number
print("Extracting frames and detecting objects...")
video = cv2.VideoCapture(video_path)
# Detect scenes first
scenes = detect(video_path, scene_detector)
scene_changes = set(end.get_frames() for _, end in scenes)
print(f"Detected {len(scenes)} scenes")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Check if current frame is a scene change
if frame_count_processed in scene_changes:
# Detect objects in the frame
detected_objects = detect_objects_in_frame(
model, tokenizer, frame, detect_keyword, grid_rows=grid_rows, grid_cols=grid_cols
)
# Update tracker with current detections
tracked_objects = tracker.update(frame, detected_objects)
# Store results for every frame, even if empty
ad_detections[frame_count_processed] = tracked_objects
frame_count_processed += 1
pbar.update(1)
video.release()
if frame_count_processed == 0:
print("No frames could be read from video")
return {}
return ad_detections
def create_detection_video(
video_path,
ad_detections,
detect_keyword,
model,
output_path=None,
ffmpeg_preset="medium",
test_mode=False,
test_duration=DEFAULT_TEST_MODE_DURATION,
box_style="censor",
):
"""Create video with detection boxes while preserving audio."""
if output_path is None:
# Create outputs directory if it doesn't exist
outputs_dir = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "outputs"
)
os.makedirs(outputs_dir, exist_ok=True)
# Clean the detect_keyword for filename
safe_keyword = "".join(
x for x in detect_keyword if x.isalnum() or x in (" ", "_", "-")
)
safe_keyword = safe_keyword.replace(" ", "_")
# Create output filename
base_name = os.path.splitext(os.path.basename(video_path))[0]
output_path = os.path.join(
outputs_dir, f"{box_style}_{safe_keyword}_{base_name}.mp4"
)
print(f"Will save output to: {output_path}")
props = get_video_properties(video_path)
fps, width, height = props["fps"], props["width"], props["height"]
# If in test mode, only process first few seconds
if test_mode:
frame_count = min(int(fps * test_duration), props["frame_count"])
print(f"Test mode enabled: Processing first {test_duration} seconds ({frame_count} frames)")
else:
frame_count = props["frame_count"]
print("Full video mode: Processing entire video")
video = cv2.VideoCapture(video_path)
# Create temp output path by adding _temp before the extension
base, ext = os.path.splitext(output_path)
temp_output = f"{base}_temp{ext}"
temp_audio = f"{base}_audio.aac" # Temporary audio file
out = cv2.VideoWriter(
temp_output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
print("Creating detection video...")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Get detections for this exact frame
if frame_count_processed in ad_detections:
current_detections = ad_detections[frame_count_processed]
if current_detections:
frame = draw_ad_boxes(
frame, current_detections, detect_keyword, model, box_style=box_style
)
out.write(frame)
frame_count_processed += 1
pbar.update(1)
video.release()
out.release()
# Extract audio from original video
try:
if test_mode:
# In test mode, extract only the required duration of audio
subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-t",
str(test_duration),
"-vn", # No video
"-acodec",
"copy",
temp_audio,
],
check=True,
)
else:
subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-vn", # No video
"-acodec",
"copy",
temp_audio,
],
check=True,
)
except subprocess.CalledProcessError as e:
print(f"Error extracting audio: {str(e)}")
if os.path.exists(temp_output):
os.remove(temp_output)
return None
# Merge processed video with original audio
try:
# Base FFmpeg command
ffmpeg_cmd = [
"ffmpeg",
"-y",
"-i",
temp_output,
"-i",
temp_audio,
"-c:v",
"libx264",
"-preset",
ffmpeg_preset,
"-crf",
"23",
"-c:a",
"aac",
"-b:a",
"192k",
"-movflags",
"+faststart", # Better web playback
]
if test_mode:
# In test mode, ensure output duration matches test_duration
ffmpeg_cmd.extend([
"-t",
str(test_duration),
"-shortest" # Ensure output duration matches shortest input
])
ffmpeg_cmd.extend([
"-loglevel",
"error",
output_path
])
subprocess.run(ffmpeg_cmd, check=True)
# Clean up temporary files
os.remove(temp_output)
os.remove(temp_audio)
if not os.path.exists(output_path):
print(
f"Warning: FFmpeg completed but output file not found at {output_path}"
)
return None
return output_path
except subprocess.CalledProcessError as e:
print(f"Error merging audio with video: {str(e)}")
if os.path.exists(temp_output):
os.remove(temp_output)
if os.path.exists(temp_audio):
os.remove(temp_audio)
return None
def process_video(
video_path,
target_object,
test_mode=False,
test_duration=DEFAULT_TEST_MODE_DURATION,
ffmpeg_preset="medium",
grid_rows=1,
grid_cols=1,
box_style="censor",
magnify_factor=2.0,
):
"""Process a video to detect and visualize specified objects."""
try:
print(f"\nProcessing: {video_path}")
print(f"Looking for: {target_object}")
# Load model
print("Loading Moondream model...")
model, tokenizer = load_moondream()
# Add magnify_factor to model dict for use in draw_ad_boxes
model.magnify_factor = magnify_factor
# Get video properties
props = get_video_properties(video_path)
# Initialize scene detector with ContentDetector
scene_detector = ContentDetector(threshold=30.0) # Adjust threshold as needed
# Initialize DeepSORT tracker
tracker = DeepSORTTracker()
# If in test mode, only process first N seconds
if test_mode:
frame_count = min(int(props["fps"] * test_duration), props["frame_count"])
else:
frame_count = props["frame_count"]
ad_detections = {} # Store detection results by frame number
print("Extracting frames and detecting objects...")
video = cv2.VideoCapture(video_path)
# Detect scenes first
scenes = detect(video_path, scene_detector)
scene_changes = set(end.get_frames() for _, end in scenes)
print(f"Detected {len(scenes)} scenes")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Check if current frame is a scene change
if frame_count_processed in scene_changes:
print(f"Scene change detected at frame {frame_count_processed}. Resetting tracker.")
tracker.reset()
# Detect objects in the frame
detected_objects = detect_objects_in_frame(
model, tokenizer, frame, target_object, grid_rows=grid_rows, grid_cols=grid_cols
)
# Update tracker with current detections
tracked_objects = tracker.update(frame, detected_objects)
# Store results for every frame, even if empty
ad_detections[frame_count_processed] = tracked_objects
frame_count_processed += 1
pbar.update(1)
video.release()
if frame_count_processed == 0:
print("No frames could be read from video")
return {}
# Apply filtering
filtered_ad_detections = filter_temporal_outliers(ad_detections)
# Build detection data structure
detection_data = {
"video_metadata": {
"file_name": os.path.basename(video_path),
"fps": props["fps"],
"width": props["width"],
"height": props["height"],
"total_frames": props["frame_count"],
"duration_sec": props["frame_count"] / props["fps"],
"detect_keyword": target_object,
"test_mode": test_mode,
"grid_size": f"{grid_rows}x{grid_cols}",
"box_style": box_style,
"timestamp": datetime.now().isoformat()
},
"frame_detections": [
{
"frame": frame_num,
"timestamp": frame_num / props["fps"],
"objects": [
{
"keyword": kw,
"bbox": list(box), # Convert numpy array to list if needed
"track_id": track_id if len(detection) == 3 else None
}
for detection in filtered_ad_detections.get(frame_num, [])
for box, kw, *track_id in [detection] # Unpack detection tuple, track_id will be empty list if not present
]
}
for frame_num in range(props["frame_count"] if not test_mode else min(int(props["fps"] * test_duration), props["frame_count"]))
]
}
# Save filtered data
outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs")
os.makedirs(outputs_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(video_path))[0]
json_path = os.path.join(outputs_dir, f"{box_style}_{target_object}_{base_name}_detections.json")
from persistence import save_detection_data
if not save_detection_data(detection_data, json_path):
print("Warning: Failed to save detection data")
# Create video with filtered data
output_path = create_detection_video(
video_path,
filtered_ad_detections,
target_object,
model,
ffmpeg_preset=ffmpeg_preset,
test_mode=test_mode,
test_duration=test_duration,
box_style=box_style,
)
if output_path is None:
print("\nError: Failed to create output video")
return None
print(f"\nOutput saved to: {output_path}")
print(f"Detection data saved to: {json_path}")
return output_path
except Exception as e:
print(f"Error processing video: {str(e)}")
import traceback
traceback.print_exc()
return None
def main():
"""Process all videos in the inputs directory."""
parser = argparse.ArgumentParser(
description="Detect objects in videos using Moondream2"
)
parser.add_argument(
"--test", action="store_true", help="Process only first 3 seconds of each video"
)
parser.add_argument(
"--test-duration",
type=int,
default=DEFAULT_TEST_MODE_DURATION,
help=f"Number of seconds to process in test mode (default: {DEFAULT_TEST_MODE_DURATION})"
)
parser.add_argument(
"--preset",
choices=FFMPEG_PRESETS,
default="medium",
help="FFmpeg encoding preset (default: medium). Faster presets = lower quality",
)
parser.add_argument(
"--detect",
type=str,
default="face",
help='Object to detect in the video (default: face, use --detect "thing to detect" to override)',
)
parser.add_argument(
"--rows",
type=int,
default=1,
help="Number of rows to split each frame into (default: 1)",
)
parser.add_argument(
"--cols",
type=int,
default=1,
help="Number of columns to split each frame into (default: 1)",
)
parser.add_argument(
"--box-style",
choices=["censor", "bounding-box", "hitmarker", "sam", "sam-fast", "fuzzy-blur",
"pixelated-blur", "intense-pixelated-blur", "obfuscated-pixel", "magnify"],
default="censor",
help="Style of detection visualization (default: censor)",
)
args = parser.parse_args()
input_dir = "inputs"
os.makedirs(input_dir, exist_ok=True)
os.makedirs("outputs", exist_ok=True)
video_files = [
f
for f in os.listdir(input_dir)
if f.lower().endswith((".mp4", ".avi", ".mov", ".mkv", ".webm"))
]
if not video_files:
print("No video files found in 'inputs' directory")
return
print(f"Found {len(video_files)} videos to process")
print(f"Will detect: {args.detect}")
if args.test:
print("Running in test mode - processing only first 3 seconds of each video")
print(f"Using FFmpeg preset: {args.preset}")
print(f"Grid size: {args.rows}x{args.cols}")
print(f"Box style: {args.box_style}")
success_count = 0
for video_file in video_files:
video_path = os.path.join(input_dir, video_file)
output_path = process_video(
video_path,
args.detect,
test_mode=args.test,
test_duration=args.test_duration,
ffmpeg_preset=args.preset,
grid_rows=args.rows,
grid_cols=args.cols,
box_style=args.box_style,
magnify_factor=args.magnify_factor,
)
if output_path:
success_count += 1
print(
f"\nProcessing complete. Successfully processed {success_count} out of {len(video_files)} videos."
)
if __name__ == "__main__":
main()