|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
from ctransformers import AutoConfig |
|
import os |
|
|
|
hf_token = os.environ.get('HF_TOKEN') |
|
|
|
from huggingface_hub import login |
|
login(token=hf_token) |
|
|
|
config = AutoConfig.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1") |
|
config.config.max_new_tokens = 2000 |
|
config.config.context_length = 4000 ) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"mistralai/Mistral-7B-Instruct-v0.1", |
|
token = hf_token, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
config=config) |
|
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token = hf_token) |
|
|
|
def generate_text(input_text): |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
attention_mask = torch.ones(input_ids.shape) |
|
|
|
output = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_length=200, |
|
do_sample=True, |
|
top_k=10, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
|
|
) |
|
|
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(output_text) |
|
|
|
|
|
cleaned_output_text = output_text.replace(input_text, "") |
|
return cleaned_output_text |
|
|
|
|
|
text_generation_interface = gr.Interface( |
|
fn=generate_text, |
|
inputs=[ |
|
gr.inputs.Textbox(label="Input Text"), |
|
], |
|
outputs=gr.inputs.Textbox(label="Generated Text")).launch() |