Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from langchain_community.vectorstores import FAISS
|
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from langchain.memory import ConversationBufferMemory
|
| 10 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
| 11 |
|
| 12 |
# Initialize environment
|
| 13 |
api_token =os.getenv("HF_TOKEN")
|
|
@@ -44,7 +45,8 @@ def process_text(text):
|
|
| 44 |
def create_db(splits):
|
| 45 |
"""Create vector database"""
|
| 46 |
embeddings = HuggingFaceEmbeddings()
|
| 47 |
-
|
|
|
|
| 48 |
return vectordb
|
| 49 |
|
| 50 |
def initialize_database(url, progress=gr.Progress()):
|
|
|
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from langchain.memory import ConversationBufferMemory
|
| 10 |
from langchain_community.llms import HuggingFaceEndpoint
|
| 11 |
+
from langchain.schema import Document
|
| 12 |
|
| 13 |
# Initialize environment
|
| 14 |
api_token =os.getenv("HF_TOKEN")
|
|
|
|
| 45 |
def create_db(splits):
|
| 46 |
"""Create vector database"""
|
| 47 |
embeddings = HuggingFaceEmbeddings()
|
| 48 |
+
documents = [Document(page_content=text, metadata={}) for text in splits]
|
| 49 |
+
vectordb = FAISS.from_documents(documents, embeddings)
|
| 50 |
return vectordb
|
| 51 |
|
| 52 |
def initialize_database(url, progress=gr.Progress()):
|