Spaces:
Runtime error
Runtime error
adding iput box
Browse files
app.py
CHANGED
@@ -197,8 +197,8 @@ if __name__ == "__main__":
|
|
197 |
demo = gr.Blocks()
|
198 |
|
199 |
with demo:
|
200 |
-
gr.Markdown("<h1 align='center'>
|
201 |
-
gr.Markdown("<
|
202 |
gr.Markdown("""
|
203 |
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by Rapid. The repair success rate is actually the performance reported in the paper.
|
204 |
- The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. Rapid does not introduce additional unnatural perturbations.
|
@@ -209,7 +209,7 @@ if __name__ == "__main__":
|
|
209 |
with gr.Group():
|
210 |
with gr.Row():
|
211 |
input_dataset = gr.Radio(
|
212 |
-
choices=["SST2", "
|
213 |
value="SST2",
|
214 |
label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
|
215 |
)
|
@@ -218,22 +218,22 @@ if __name__ == "__main__":
|
|
218 |
value="TextFooler",
|
219 |
label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
|
220 |
)
|
221 |
-
with gr.Group(visible=
|
222 |
|
223 |
with gr.Row():
|
224 |
input_sentence = gr.Textbox(
|
225 |
placeholder="Input a natural example...",
|
226 |
label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",
|
227 |
-
visible=
|
228 |
)
|
229 |
input_label = gr.Textbox(
|
230 |
placeholder="Original label, (must be a integer, because we use digits to represent labels in training)",
|
231 |
label="Original Label",
|
232 |
-
visible=
|
233 |
)
|
234 |
gr.Markdown(
|
235 |
"<h3 align='center'>To input an example, please select a dataset which the example belongs to or resembles.</h2>",
|
236 |
-
visible=
|
237 |
)
|
238 |
|
239 |
msg_text = gr.Textbox(
|
|
|
197 |
demo = gr.Blocks()
|
198 |
|
199 |
with demo:
|
200 |
+
gr.Markdown("<h1 align='center'>Detection and Correction based on Word Importance Ranking</h1>")
|
201 |
+
gr.Markdown("<h2 align='center'>Clarifications</h2>")
|
202 |
gr.Markdown("""
|
203 |
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by Rapid. The repair success rate is actually the performance reported in the paper.
|
204 |
- The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. Rapid does not introduce additional unnatural perturbations.
|
|
|
209 |
with gr.Group():
|
210 |
with gr.Row():
|
211 |
input_dataset = gr.Radio(
|
212 |
+
choices=["SST2", "IMDB", "MR", "AGNews10K"],
|
213 |
value="SST2",
|
214 |
label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
|
215 |
)
|
|
|
218 |
value="TextFooler",
|
219 |
label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
|
220 |
)
|
221 |
+
with gr.Group(visible=True):
|
222 |
|
223 |
with gr.Row():
|
224 |
input_sentence = gr.Textbox(
|
225 |
placeholder="Input a natural example...",
|
226 |
label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",
|
227 |
+
visible=True
|
228 |
)
|
229 |
input_label = gr.Textbox(
|
230 |
placeholder="Original label, (must be a integer, because we use digits to represent labels in training)",
|
231 |
label="Original Label",
|
232 |
+
visible=True
|
233 |
)
|
234 |
gr.Markdown(
|
235 |
"<h3 align='center'>To input an example, please select a dataset which the example belongs to or resembles.</h2>",
|
236 |
+
visible=True
|
237 |
)
|
238 |
|
239 |
msg_text = gr.Textbox(
|