Spaces:
Runtime error
Runtime error
| import os | |
| import requests | |
| import tempfile | |
| import shutil | |
| import torch | |
| from pytorch_lightning import LightningModule | |
| from safetensors.torch import save_file | |
| from torch import nn | |
| from modelalign import BERTAlignModel | |
| import gradio as gr | |
| # =========================== | |
| # Utility Functions | |
| # =========================== | |
| def download_checkpoint(url: str, dest_path: str): | |
| """ | |
| Downloads the checkpoint from the specified URL to the destination path. | |
| """ | |
| try: | |
| with requests.get(url, stream=True) as response: | |
| response.raise_for_status() | |
| with open(dest_path, 'wb') as f: | |
| shutil.copyfileobj(response.raw, f) | |
| return True, "Checkpoint downloaded successfully." | |
| except Exception as e: | |
| return False, f"Failed to download checkpoint: {str(e)}" | |
| def initialize_model(model_name: str, device: str = 'cpu'): | |
| """ | |
| Initializes the BERTAlignModel based on the provided model name. | |
| """ | |
| try: | |
| model = BERTAlignModel(base_model_name=model_name) | |
| model.to(device) | |
| model.eval() # Set to evaluation mode | |
| return True, model | |
| except Exception as e: | |
| return False, f"Failed to initialize model: {str(e)}" | |
| def load_checkpoint(model: LightningModule, checkpoint_path: str, device: str = 'cpu'): | |
| """ | |
| Loads the checkpoint into the model. | |
| """ | |
| try: | |
| # Load the checkpoint; adjust map_location based on device | |
| checkpoint = torch.load(checkpoint_path, map_location=device) | |
| model.load_state_dict(checkpoint['state_dict'], strict=False) | |
| return True, "Checkpoint loaded successfully." | |
| except Exception as e: | |
| return False, f"Failed to load checkpoint: {str(e)}" | |
| def convert_to_safetensors(model: LightningModule, save_path: str): | |
| """ | |
| Converts the model's state_dict to the safetensors format. | |
| """ | |
| try: | |
| state_dict = model.state_dict() | |
| save_file(state_dict, save_path) | |
| return True, "Model converted to SafeTensors successfully." | |
| except Exception as e: | |
| return False, f"Failed to convert to SafeTensors: {str(e)}" | |
| # =========================== | |
| # Gradio Interface Function | |
| # =========================== | |
| def convert_checkpoint_to_safetensors(checkpoint_url: str, model_name: str): | |
| """ | |
| Orchestrates the download, loading, conversion, and preparation for download. | |
| Returns the safetensors file or an error message. | |
| """ | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| checkpoint_path = os.path.join(tmpdir, "model.ckpt") | |
| safetensors_path = os.path.join(tmpdir, "model.safetensors") | |
| # Step 1: Download the checkpoint | |
| success, message = download_checkpoint(checkpoint_url, checkpoint_path) | |
| if not success: | |
| return gr.update(value=None, visible=False), message | |
| # Step 2: Initialize the model | |
| success, model_or_msg = initialize_model(model_name) | |
| if not success: | |
| return gr.update(value=None, visible=False), model_or_msg | |
| model = model_or_msg | |
| # Step 3: Load the checkpoint | |
| success, message = load_checkpoint(model, checkpoint_path) | |
| if not success: | |
| return gr.update(value=None, visible=False), message | |
| # Step 4: Convert to SafeTensors | |
| success, message = convert_to_safetensors(model, safetensors_path) | |
| if not success: | |
| return gr.update(value=None, visible=False), message | |
| # Step 5: Read the safetensors file for download | |
| try: | |
| with open(safetensors_path, "rb") as f: | |
| safetensors_bytes = f.read() | |
| return safetensors_bytes, "Conversion successful! Download your SafeTensors file below." | |
| except Exception as e: | |
| return gr.update(value=None, visible=False), f"Failed to prepare download: {str(e)}" | |
| # =========================== | |
| # Gradio Interface Setup | |
| # =========================== | |
| title = "Checkpoint to SafeTensors Converter" | |
| description = """ | |
| Convert your PyTorch Lightning `.ckpt` checkpoints to the secure `safetensors` format. | |
| **Inputs**: | |
| - **Checkpoint URL**: Direct link to the `.ckpt` file. | |
| - **Model Name**: Name of the base model (e.g., `roberta-base`, `bert-base-uncased`). | |
| **Output**: | |
| - Downloadable `safetensors` file. | |
| """ | |
| iface = gr.Interface( | |
| fn=convert_checkpoint_to_safetensors, | |
| inputs=[ | |
| gr.inputs.Textbox(lines=2, placeholder="Enter the checkpoint URL here...", label="Checkpoint URL"), | |
| gr.inputs.Textbox(lines=1, placeholder="e.g., roberta-base", label="Model Name") | |
| ], | |
| outputs=[ | |
| gr.outputs.File(label="Download SafeTensors File"), | |
| gr.outputs.Textbox(label="Status") | |
| ], | |
| title=title, | |
| description=description, | |
| examples=[ | |
| [ | |
| "https://huggingface.co/yzha/AlignScore/resolve/main/AlignScore-base.ckpt?download=true", | |
| "roberta-base" | |
| ], | |
| [ | |
| "https://path.to/your/checkpoint.ckpt", | |
| "bert-base-uncased" | |
| ] | |
| ], | |
| allow_flagging="never" | |
| ) | |
| # =========================== | |
| # Launch the Interface | |
| # =========================== | |
| if __name__ == "__main__": | |
| iface.launch() | |