Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import warnings | |
| from abc import ABCMeta | |
| from collections import defaultdict | |
| from logging import FileHandler | |
| import torch.nn as nn | |
| from annotator.uniformer.mmcv.runner.dist_utils import master_only | |
| from annotator.uniformer.mmcv.utils.logging import get_logger, logger_initialized, print_log | |
| class BaseModule(nn.Module, metaclass=ABCMeta): | |
| """Base module for all modules in openmmlab. | |
| ``BaseModule`` is a wrapper of ``torch.nn.Module`` with additional | |
| functionality of parameter initialization. Compared with | |
| ``torch.nn.Module``, ``BaseModule`` mainly adds three attributes. | |
| - ``init_cfg``: the config to control the initialization. | |
| - ``init_weights``: The function of parameter | |
| initialization and recording initialization | |
| information. | |
| - ``_params_init_info``: Used to track the parameter | |
| initialization information. This attribute only | |
| exists during executing the ``init_weights``. | |
| Args: | |
| init_cfg (dict, optional): Initialization config dict. | |
| """ | |
| def __init__(self, init_cfg=None): | |
| """Initialize BaseModule, inherited from `torch.nn.Module`""" | |
| # NOTE init_cfg can be defined in different levels, but init_cfg | |
| # in low levels has a higher priority. | |
| super(BaseModule, self).__init__() | |
| # define default value of init_cfg instead of hard code | |
| # in init_weights() function | |
| self._is_init = False | |
| self.init_cfg = copy.deepcopy(init_cfg) | |
| # Backward compatibility in derived classes | |
| # if pretrained is not None: | |
| # warnings.warn('DeprecationWarning: pretrained is a deprecated \ | |
| # key, please consider using init_cfg') | |
| # self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
| def is_init(self): | |
| return self._is_init | |
| def init_weights(self): | |
| """Initialize the weights.""" | |
| is_top_level_module = False | |
| # check if it is top-level module | |
| if not hasattr(self, '_params_init_info'): | |
| # The `_params_init_info` is used to record the initialization | |
| # information of the parameters | |
| # the key should be the obj:`nn.Parameter` of model and the value | |
| # should be a dict containing | |
| # - init_info (str): The string that describes the initialization. | |
| # - tmp_mean_value (FloatTensor): The mean of the parameter, | |
| # which indicates whether the parameter has been modified. | |
| # this attribute would be deleted after all parameters | |
| # is initialized. | |
| self._params_init_info = defaultdict(dict) | |
| is_top_level_module = True | |
| # Initialize the `_params_init_info`, | |
| # When detecting the `tmp_mean_value` of | |
| # the corresponding parameter is changed, update related | |
| # initialization information | |
| for name, param in self.named_parameters(): | |
| self._params_init_info[param][ | |
| 'init_info'] = f'The value is the same before and ' \ | |
| f'after calling `init_weights` ' \ | |
| f'of {self.__class__.__name__} ' | |
| self._params_init_info[param][ | |
| 'tmp_mean_value'] = param.data.mean() | |
| # pass `params_init_info` to all submodules | |
| # All submodules share the same `params_init_info`, | |
| # so it will be updated when parameters are | |
| # modified at any level of the model. | |
| for sub_module in self.modules(): | |
| sub_module._params_init_info = self._params_init_info | |
| # Get the initialized logger, if not exist, | |
| # create a logger named `mmcv` | |
| logger_names = list(logger_initialized.keys()) | |
| logger_name = logger_names[0] if logger_names else 'mmcv' | |
| from ..cnn import initialize | |
| from ..cnn.utils.weight_init import update_init_info | |
| module_name = self.__class__.__name__ | |
| if not self._is_init: | |
| if self.init_cfg: | |
| print_log( | |
| f'initialize {module_name} with init_cfg {self.init_cfg}', | |
| logger=logger_name) | |
| initialize(self, self.init_cfg) | |
| if isinstance(self.init_cfg, dict): | |
| # prevent the parameters of | |
| # the pre-trained model | |
| # from being overwritten by | |
| # the `init_weights` | |
| if self.init_cfg['type'] == 'Pretrained': | |
| return | |
| for m in self.children(): | |
| if hasattr(m, 'init_weights'): | |
| m.init_weights() | |
| # users may overload the `init_weights` | |
| update_init_info( | |
| m, | |
| init_info=f'Initialized by ' | |
| f'user-defined `init_weights`' | |
| f' in {m.__class__.__name__} ') | |
| self._is_init = True | |
| else: | |
| warnings.warn(f'init_weights of {self.__class__.__name__} has ' | |
| f'been called more than once.') | |
| if is_top_level_module: | |
| self._dump_init_info(logger_name) | |
| for sub_module in self.modules(): | |
| del sub_module._params_init_info | |
| def _dump_init_info(self, logger_name): | |
| """Dump the initialization information to a file named | |
| `initialization.log.json` in workdir. | |
| Args: | |
| logger_name (str): The name of logger. | |
| """ | |
| logger = get_logger(logger_name) | |
| with_file_handler = False | |
| # dump the information to the logger file if there is a `FileHandler` | |
| for handler in logger.handlers: | |
| if isinstance(handler, FileHandler): | |
| handler.stream.write( | |
| 'Name of parameter - Initialization information\n') | |
| for name, param in self.named_parameters(): | |
| handler.stream.write( | |
| f'\n{name} - {param.shape}: ' | |
| f"\n{self._params_init_info[param]['init_info']} \n") | |
| handler.stream.flush() | |
| with_file_handler = True | |
| if not with_file_handler: | |
| for name, param in self.named_parameters(): | |
| print_log( | |
| f'\n{name} - {param.shape}: ' | |
| f"\n{self._params_init_info[param]['init_info']} \n ", | |
| logger=logger_name) | |
| def __repr__(self): | |
| s = super().__repr__() | |
| if self.init_cfg: | |
| s += f'\ninit_cfg={self.init_cfg}' | |
| return s | |
| class Sequential(BaseModule, nn.Sequential): | |
| """Sequential module in openmmlab. | |
| Args: | |
| init_cfg (dict, optional): Initialization config dict. | |
| """ | |
| def __init__(self, *args, init_cfg=None): | |
| BaseModule.__init__(self, init_cfg) | |
| nn.Sequential.__init__(self, *args) | |
| class ModuleList(BaseModule, nn.ModuleList): | |
| """ModuleList in openmmlab. | |
| Args: | |
| modules (iterable, optional): an iterable of modules to add. | |
| init_cfg (dict, optional): Initialization config dict. | |
| """ | |
| def __init__(self, modules=None, init_cfg=None): | |
| BaseModule.__init__(self, init_cfg) | |
| nn.ModuleList.__init__(self, modules) | |