Spaces:
Runtime error
Runtime error
| """Modified from https://github.com/rwightman/pytorch-image- | |
| models/blob/master/timm/models/layers/drop.py.""" | |
| import math | |
| import warnings | |
| import torch | |
| def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
| """Reference: https://people.sc.fsu.edu/~jburkardt/presentations | |
| /truncated_normal.pdf""" | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn( | |
| 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' | |
| 'The distribution of values may be incorrect.', | |
| stacklevel=2) | |
| with torch.no_grad(): | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| lower_bound = norm_cdf((a - mean) / std) | |
| upper_bound = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [l, u], then translate to | |
| # [2l-1, 2u-1]. | |
| tensor.uniform_(2 * lower_bound - 1, 2 * upper_bound - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| return tensor | |
| def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
| r"""Fills the input Tensor with values drawn from a truncated | |
| normal distribution. The values are effectively drawn from the | |
| normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
| with values outside :math:`[a, b]` redrawn until they are within | |
| the bounds. The method used for generating the random values works | |
| best when :math:`a \leq \text{mean} \leq b`. | |
| Args: | |
| tensor (``torch.Tensor``): an n-dimensional `torch.Tensor` | |
| mean (float): the mean of the normal distribution | |
| std (float): the standard deviation of the normal distribution | |
| a (float): the minimum cutoff value | |
| b (float): the maximum cutoff value | |
| """ | |
| return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |