# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Union import cv2 import PIL.Image import torch import torch.nn.functional as F from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils.torch_utils import randn_tensor from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from controlnet_union import ControlNetModel_Union def latents_to_rgb(latents): weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35)) weights_tensor = torch.t( torch.tensor(weights, dtype=latents.dtype).to(latents.device) ) biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to( latents.device ) rgb_tensor = torch.einsum( "...lxy,lr -> ...rxy", latents, weights_tensor ) + biases_tensor.unsqueeze(-1).unsqueeze(-1) image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy() image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21) blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0) final_image = PIL.Image.fromarray(blurred_image) width, height = final_image.size final_image = final_image.resize( (width * 8, height * 8), PIL.Image.Resampling.LANCZOS ) return final_image def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, **kwargs, ): scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class StableDiffusionXLFillPipeline(DiffusionPipeline, StableDiffusionMixin): model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" _optional_components = [ "tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2", ] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: ControlNetModel_Union, scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool = True, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, controlnet=controlnet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True ) self.control_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False, ) self.register_to_config( force_zeros_for_empty_prompt=force_zeros_for_empty_prompt ) def encode_prompt( self, prompt: str, device: Optional[torch.device] = None, do_classifier_free_guidance: bool = True, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) # Define tokenizers and text encoders tokenizers = ( [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] ) text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) prompt_2 = prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # textual inversion: process multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder( text_input_ids.to(device), output_hidden_states=True ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = True negative_prompt_embeds = None negative_pooled_prompt_embeds = None if do_classifier_free_guidance and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = "" negative_prompt_2 = negative_prompt # normalize str to list negative_prompt = ( batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt ) negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip( uncond_tokens, tokenizers, text_encoders ): max_length = prompt_embeds.shape[1] uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, 1, 1) prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] if self.text_encoder_2 is not None: negative_prompt_embeds = negative_prompt_embeds.to( dtype=self.text_encoder_2.dtype, device=device ) else: negative_prompt_embeds = negative_prompt_embeds.to( dtype=self.unet.dtype, device=device ) negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * 1, seq_len, -1 ) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat( 1, 1 ).view(bs_embed * 1, -1) return ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) def check_inputs( self, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, image, controlnet_conditioning_scale=1.0, ): if prompt_embeds is None: raise ValueError( "Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined." ) if negative_prompt_embeds is None: raise ValueError( "Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined." ) if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) # Check `image` is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( self.controlnet, torch._dynamo.eval_frame.OptimizedModule ) if ( isinstance(self.controlnet, ControlNetModel_Union) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel_Union) ): if not isinstance(image, PIL.Image.Image): raise TypeError( f"image must be passed and has to be a PIL image, but is {type(image)}" ) else: assert False # Check `controlnet_conditioning_scale` if ( isinstance(self.controlnet, ControlNetModel_Union) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel_Union) ): if not isinstance(controlnet_conditioning_scale, float): raise TypeError( "For single controlnet: `controlnet_conditioning_scale` must be type `float`." ) else: assert False def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False): image = self.control_image_processor.preprocess(image).to(dtype=torch.float32) image_batch_size = image.shape[0] image = image.repeat_interleave(image_batch_size, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance: image = torch.cat([image] * 2) return image def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device ): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) latents = randn_tensor(shape, device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() def __call__( self, prompt_embeds: torch.Tensor, negative_prompt_embeds: torch.Tensor, pooled_prompt_embeds: torch.Tensor, negative_pooled_prompt_embeds: torch.Tensor, image: PipelineImageInput = None, num_inference_steps: int = 8, guidance_scale: float = 1.5, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, ): # 1. Check inputs. Raise error if not correct self.check_inputs( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, image, controlnet_conditioning_scale, ) self._guidance_scale = guidance_scale # 2. Define call parameters batch_size = 1 device = self._execution_device # 4. Prepare image if isinstance(self.controlnet, ControlNetModel_Union): image = self.prepare_image( image=image, device=device, dtype=self.controlnet.dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, ) height, width = image.shape[-2:] else: assert False # 5. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device ) self._num_timesteps = len(timesteps) # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size, num_channels_latents, height, width, prompt_embeds.dtype, device, ) # 7 Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds add_time_ids = negative_add_time_ids = torch.tensor( image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:] ).unsqueeze(0) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat( [negative_pooled_prompt_embeds, add_text_embeds], dim=0 ) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size, 1) controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0] union_control_type = ( torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0]) .to(device, dtype=prompt_embeds.dtype) .repeat(batch_size * 2, 1) ) added_cond_kwargs = { "text_embeds": add_text_embeds, "time_ids": add_time_ids, "control_type": union_control_type, } controlnet_prompt_embeds = prompt_embeds controlnet_added_cond_kwargs = added_cond_kwargs # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) # controlnet(s) inference control_model_input = latent_model_input down_block_res_samples, mid_block_res_sample = self.controlnet( control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond_list=controlnet_image_list, conditioning_scale=controlnet_conditioning_scale, guess_mode=False, added_cond_kwargs=controlnet_added_cond_kwargs, return_dict=False, ) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=None, cross_attention_kwargs={}, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, return_dict=False )[0] if i == 2: prompt_embeds = prompt_embeds[-1:] add_text_embeds = add_text_embeds[-1:] add_time_ids = add_time_ids[-1:] union_control_type = union_control_type[-1:] added_cond_kwargs = { "text_embeds": add_text_embeds, "time_ids": add_time_ids, "control_type": union_control_type, } controlnet_prompt_embeds = prompt_embeds controlnet_added_cond_kwargs = added_cond_kwargs image = image[-1:] controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0] self._guidance_scale = 0.0 if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() yield latents_to_rgb(latents) latents = latents / self.vae.config.scaling_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image)[0] # Offload all models self.maybe_free_model_hooks() yield image