Commit
·
c2e02ba
1
Parent(s):
2d59648
migrate finfast summary data draft
Browse files- app/app.py +12 -12
- app/controllers/summary/__init__.py +99 -0
- app/controllers/summary/content/__init__.py +29 -0
- app/controllers/summary/content/monthly.py +12 -0
- app/controllers/summary/content/today.py +12 -0
- app/controllers/summary/content/weekly.py +12 -0
- app/controllers/summary/entity/__init__.py +27 -0
- app/controllers/summary/entity/monthly.py +12 -0
- app/controllers/summary/entity/today.py +12 -0
- app/controllers/summary/entity/weekly.py +12 -0
- app/controllers/summary/sentiment/__init__.py +38 -0
- app/controllers/summary/sentiment/entitites.py +12 -0
- app/controllers/summary/sentiment/monthly.py +11 -0
- app/controllers/summary/sentiment/today.py +11 -0
- app/controllers/summary/sentiment/weekly.py +11 -0
- app/controllers/summary/utils.py +365 -0
- app/database/mongodb.py +3 -0
- app/requirements.txt +7 -0
- app/routes/__init__.py +1 -0
- app/routes/summary.py +69 -0
app/app.py
CHANGED
|
@@ -1,23 +1,23 @@
|
|
| 1 |
"""Flask application entry point."""
|
| 2 |
-
|
| 3 |
import logging
|
| 4 |
from flask import Flask
|
| 5 |
from flask_apscheduler import APScheduler
|
| 6 |
from asgiref.wsgi import WsgiToAsgi
|
| 7 |
-
from routes.category_router import category_bp
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
|
| 22 |
def create_app():
|
| 23 |
"""
|
|
|
|
| 1 |
"""Flask application entry point."""
|
| 2 |
+
import json
|
| 3 |
import logging
|
| 4 |
from flask import Flask
|
| 5 |
from flask_apscheduler import APScheduler
|
| 6 |
from asgiref.wsgi import WsgiToAsgi
|
|
|
|
| 7 |
|
| 8 |
+
from routes.summary import summary_bp
|
| 9 |
+
from routes.category_router import category_bp
|
| 10 |
|
| 11 |
+
class Config:
|
| 12 |
+
"""
|
| 13 |
+
Config class for application settings.
|
| 14 |
|
| 15 |
+
Attributes:
|
| 16 |
+
SCHEDULER_API_ENABLED (bool): Indicates whether the scheduler's API is enabled.
|
| 17 |
+
"""
|
| 18 |
+
with open('jobs.json', 'r', encoding='utf-8') as jobs_file:
|
| 19 |
+
JOBS = json.load(jobs_file)
|
| 20 |
+
SCHEDULER_API_ENABLED = True
|
| 21 |
|
| 22 |
def create_app():
|
| 23 |
"""
|
app/controllers/summary/__init__.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Summary controller package for handling summary page related operations."""
|
| 2 |
+
import os
|
| 3 |
+
import importlib
|
| 4 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 5 |
+
from typing import Dict, Any
|
| 6 |
+
from .utils import get_content_flow_data, get_entity_analysis_data, get_sentiment_analysis_data, get_entity_sentiment_data
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def _run_process(args):
|
| 10 |
+
"""
|
| 11 |
+
Dynamically imports and runs the 'process' function from a specified summary module.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
args (tuple):
|
| 15 |
+
- module (str): The name of the summary module folder to import from.
|
| 16 |
+
- chart_id (str): The name of the chart module to import and run.
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
Any: The result returned by the 'process' function of the specified module.
|
| 20 |
+
|
| 21 |
+
Raises:
|
| 22 |
+
ModuleNotFoundError: If the specified summary module does not exist.
|
| 23 |
+
AttributeError: If the 'process' function is not found in the module.
|
| 24 |
+
"""
|
| 25 |
+
module, chart_id = args
|
| 26 |
+
return importlib.import_module(f"controllers.summary.{module}.{chart_id}").process()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def process(module):
|
| 30 |
+
"""
|
| 31 |
+
Processes all Python chart modules within a specified subdirectory.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
module (str): The name of the subdirectory (module) containing chart Python files.
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
list: A list of results returned by processing each chart Python file.
|
| 38 |
+
|
| 39 |
+
Notes:
|
| 40 |
+
- Only files ending with ".py" and not named "__init__.py" are considered.
|
| 41 |
+
- Utility files (utils.py, common.py, etc.) are automatically excluded.
|
| 42 |
+
- Chart files are processed concurrently using a thread pool.
|
| 43 |
+
- The helper function `_run_process` is used to process each chart file.
|
| 44 |
+
"""
|
| 45 |
+
current_dir = os.path.join(os.path.dirname(__file__), module)
|
| 46 |
+
chart_ids = [
|
| 47 |
+
f[:-3] for f in os.listdir(current_dir)
|
| 48 |
+
if f.endswith(".py") and f not in ("__init__.py",)
|
| 49 |
+
]
|
| 50 |
+
with ThreadPoolExecutor() as executor:
|
| 51 |
+
charts = list(executor.map(
|
| 52 |
+
_run_process,
|
| 53 |
+
[(module, chart_id) for chart_id in sorted(chart_ids)]
|
| 54 |
+
))
|
| 55 |
+
return charts
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def get_summary_data(include_content: bool = True, include_entity: bool = True, include_sentiment: bool = True) -> Dict[str, Any]:
|
| 59 |
+
"""
|
| 60 |
+
Get complete summary dashboard data for all time periods.
|
| 61 |
+
|
| 62 |
+
This function aggregates content flow, entity analysis, and sentiment analysis data across
|
| 63 |
+
three time periods: today, week, and month.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
include_content (bool, optional): Whether to include content flow data.
|
| 67 |
+
Defaults to True.
|
| 68 |
+
include_entity (bool, optional): Whether to include entity analysis data.
|
| 69 |
+
Defaults to True.
|
| 70 |
+
include_sentiment (bool, optional): Whether to include sentiment analysis data.
|
| 71 |
+
Defaults to True.
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
Dict[str, Any]: Summary data containing content, entity, and/or sentiment information:
|
| 75 |
+
- "content": Content flow data for today/week/month (if include_content=True)
|
| 76 |
+
- "entity": Entity analysis data for today/week/month (if include_entity=True)
|
| 77 |
+
- "sentiment": Sentiment analysis data for today/week/month (if include_sentiment=True)
|
| 78 |
+
"""
|
| 79 |
+
summary = {}
|
| 80 |
+
if include_content:
|
| 81 |
+
summary["content"] = {
|
| 82 |
+
"today": get_content_flow_data("today"),
|
| 83 |
+
"week": get_content_flow_data("week"),
|
| 84 |
+
"month": get_content_flow_data("month")
|
| 85 |
+
}
|
| 86 |
+
if include_entity:
|
| 87 |
+
summary["entity"] = {
|
| 88 |
+
"today": get_entity_analysis_data("today"),
|
| 89 |
+
"week": get_entity_analysis_data("week"),
|
| 90 |
+
"month": get_entity_analysis_data("month")
|
| 91 |
+
}
|
| 92 |
+
if include_sentiment:
|
| 93 |
+
summary["sentiment"] = {
|
| 94 |
+
"today": get_sentiment_analysis_data("today"),
|
| 95 |
+
"week": get_sentiment_analysis_data("week"),
|
| 96 |
+
"month": get_sentiment_analysis_data("month"),
|
| 97 |
+
"entities": get_entity_sentiment_data("week")
|
| 98 |
+
}
|
| 99 |
+
return summary
|
app/controllers/summary/content/__init__.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Public interface for content-related summary calculations."""
|
| 2 |
+
|
| 3 |
+
from ..utils import get_content_flow_data as _base
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def get_today_content_flow_data():
|
| 7 |
+
"""Return Content Flow data for *today*."""
|
| 8 |
+
return _base("today")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_weekly_content_flow_data():
|
| 12 |
+
"""Return Content Flow data for the *latest 7 days*."""
|
| 13 |
+
# the internal util accepts either ``week`` or ``weekly``
|
| 14 |
+
return _base("week")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_monthly_content_flow_data():
|
| 18 |
+
"""Return Content Flow data for the *latest 30 days*."""
|
| 19 |
+
return _base("month")
|
| 20 |
+
|
| 21 |
+
# Re-export the generic helper so legacy imports keep working
|
| 22 |
+
get_content_flow_data = _base # type: ignore
|
| 23 |
+
|
| 24 |
+
__all__ = [
|
| 25 |
+
"get_content_flow_data",
|
| 26 |
+
"get_today_content_flow_data",
|
| 27 |
+
"get_weekly_content_flow_data",
|
| 28 |
+
"get_monthly_content_flow_data",
|
| 29 |
+
]
|
app/controllers/summary/content/monthly.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Content Flow Tracker - Monthly Module.
|
| 2 |
+
|
| 3 |
+
This module provides content flow analysis for the latest 30 days of data.
|
| 4 |
+
It processes and returns aggregated article statistics by source and category
|
| 5 |
+
for the past 30 days from the most recent article date.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_content_flow_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Content Flow Tracker data for the *latest 30 days*."""
|
| 12 |
+
return get_content_flow_data("month")
|
app/controllers/summary/content/today.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Content Flow Tracker - Today Module.
|
| 2 |
+
|
| 3 |
+
This module provides content flow analysis for today's data only.
|
| 4 |
+
It processes and returns aggregated article statistics by source and category
|
| 5 |
+
for the current day.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_content_flow_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Content Flow Tracker data for *today* only."""
|
| 12 |
+
return get_content_flow_data("today")
|
app/controllers/summary/content/weekly.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Content Flow Tracker - Weekly Module.
|
| 2 |
+
|
| 3 |
+
This module provides content flow analysis for the latest 7 days of data.
|
| 4 |
+
It processes and returns aggregated article statistics by source and category
|
| 5 |
+
for the past 7 days from the most recent article date.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_content_flow_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Content Flow Tracker data for the *latest 7 days*."""
|
| 12 |
+
return get_content_flow_data("week")
|
app/controllers/summary/entity/__init__.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Public interface for entity analysis calculations."""
|
| 2 |
+
from ..utils import get_entity_analysis_data as _base
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def get_today_entity_analysis_data():
|
| 6 |
+
"""Return Entity Analysis data for *today*."""
|
| 7 |
+
return _base("today")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_weekly_entity_analysis_data():
|
| 11 |
+
"""Return Entity Analysis data for the *latest 7 days*."""
|
| 12 |
+
return _base("week")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_monthly_entity_analysis_data():
|
| 16 |
+
"""Return Entity Analysis data for the *latest 30 days*."""
|
| 17 |
+
return _base("month")
|
| 18 |
+
|
| 19 |
+
# Re-export generic helper for backward compatibility
|
| 20 |
+
get_entity_analysis_data = _base # type: ignore
|
| 21 |
+
|
| 22 |
+
__all__ = [
|
| 23 |
+
"get_entity_analysis_data",
|
| 24 |
+
"get_today_entity_analysis_data",
|
| 25 |
+
"get_weekly_entity_analysis_data",
|
| 26 |
+
"get_monthly_entity_analysis_data",
|
| 27 |
+
]
|
app/controllers/summary/entity/monthly.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Entity Analysis - Monthly Module.
|
| 2 |
+
|
| 3 |
+
This module provides entity analysis for the latest 30 days of data.
|
| 4 |
+
It processes and returns top entities with their mention counts and types
|
| 5 |
+
for the past 30 days from the most recent article date.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_entity_analysis_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Entity Analysis data for the *latest 30 days*."""
|
| 12 |
+
return get_entity_analysis_data("month")
|
app/controllers/summary/entity/today.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Entity Analysis - Today Module.
|
| 2 |
+
|
| 3 |
+
This module provides entity analysis for today's data only.
|
| 4 |
+
It processes and returns top entities with their mention counts and types
|
| 5 |
+
for the current day.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_entity_analysis_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Entity Analysis data for *today*."""
|
| 12 |
+
return get_entity_analysis_data("today")
|
app/controllers/summary/entity/weekly.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Entity Analysis - Weekly Module.
|
| 2 |
+
|
| 3 |
+
This module provides entity analysis for the latest 7 days of data.
|
| 4 |
+
It processes and returns top entities with their mention counts and types
|
| 5 |
+
for the past 7 days from the most recent article date.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_entity_analysis_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Entity Analysis data for the *latest 7 days*."""
|
| 12 |
+
return get_entity_analysis_data("week")
|
app/controllers/summary/sentiment/__init__.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Public interface for sentiment analysis calculations."""
|
| 2 |
+
|
| 3 |
+
from ..utils import get_sentiment_analysis_data as _base_sentiment
|
| 4 |
+
from ..utils import get_entity_sentiment_data as _base_entity_sentiment
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_today_sentiment_data():
|
| 8 |
+
"""Return Sentiment Analysis data for *today*."""
|
| 9 |
+
return _base_sentiment("today")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_weekly_sentiment_data():
|
| 13 |
+
"""Return Sentiment Analysis data for the *latest 7 days*."""
|
| 14 |
+
return _base_sentiment("week")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_monthly_sentiment_data():
|
| 18 |
+
"""Return Sentiment Analysis data for the *latest 30 days*."""
|
| 19 |
+
return _base_sentiment("month")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_entity_sentiment_data():
|
| 23 |
+
"""Return Entity Sentiment Analysis data for the *latest 7 days*."""
|
| 24 |
+
return _base_entity_sentiment("week")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Re-export the generic helpers for backward compatibility
|
| 28 |
+
get_sentiment_analysis_data = _base_sentiment
|
| 29 |
+
get_entities_sentiment_data = _base_entity_sentiment
|
| 30 |
+
|
| 31 |
+
__all__ = [
|
| 32 |
+
"get_sentiment_analysis_data",
|
| 33 |
+
"get_today_sentiment_data",
|
| 34 |
+
"get_weekly_sentiment_data",
|
| 35 |
+
"get_monthly_sentiment_data",
|
| 36 |
+
"get_entity_sentiment_data",
|
| 37 |
+
"get_entities_sentiment_data",
|
| 38 |
+
]
|
app/controllers/summary/sentiment/entitites.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Entity Sentiment Analysis Module.
|
| 2 |
+
|
| 3 |
+
This module provides sentiment analysis for entities mentioned in articles.
|
| 4 |
+
It processes and returns aggregated sentiment scores by entity type and entity name
|
| 5 |
+
for the current week.
|
| 6 |
+
"""
|
| 7 |
+
from ..utils import get_entity_sentiment_data
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process():
|
| 11 |
+
"""Return Entity Sentiment Analysis data for the *current week*."""
|
| 12 |
+
return get_entity_sentiment_data("week")
|
app/controllers/summary/sentiment/monthly.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Sentiment Analysis - Monthly Module.
|
| 2 |
+
|
| 3 |
+
This module provides sentiment analysis for the current month's articles by category.
|
| 4 |
+
It processes and returns aggregated sentiment scores by category for the current month.
|
| 5 |
+
"""
|
| 6 |
+
from ..utils import get_sentiment_analysis_data
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def process():
|
| 10 |
+
"""Return Sentiment Analysis data for the *current month*."""
|
| 11 |
+
return get_sentiment_analysis_data("month")
|
app/controllers/summary/sentiment/today.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Sentiment Analysis - Today Module.
|
| 2 |
+
|
| 3 |
+
This module provides sentiment analysis for today's articles by category.
|
| 4 |
+
It processes and returns aggregated sentiment scores by category for the current day.
|
| 5 |
+
"""
|
| 6 |
+
from ..utils import get_sentiment_analysis_data
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def process():
|
| 10 |
+
"""Return Sentiment Analysis data for *today* only."""
|
| 11 |
+
return get_sentiment_analysis_data("today")
|
app/controllers/summary/sentiment/weekly.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Sentiment Analysis - Weekly Module.
|
| 2 |
+
|
| 3 |
+
This module provides sentiment analysis for the current week's articles by category.
|
| 4 |
+
It processes and returns aggregated sentiment scores by category for the past 7 days.
|
| 5 |
+
"""
|
| 6 |
+
from ..utils import get_sentiment_analysis_data
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def process():
|
| 10 |
+
"""Return Sentiment Analysis data for the *current week*."""
|
| 11 |
+
return get_sentiment_analysis_data("week")
|
app/controllers/summary/utils.py
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility functions for Summary calculations.
|
| 2 |
+
This module contains utility functions for both Content Flow Tracker and Entity Analysis,
|
| 3 |
+
extracted and merged from the previous content/utils.py and entity/utils.py files.
|
| 4 |
+
"""
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
from typing import Dict, Any
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
|
| 9 |
+
from database.mongodb import article_collection, entity_collection
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _get_latest_publish_date_from_collection(collection) -> datetime:
|
| 13 |
+
"""Return the latest publish date found in the specified collection.
|
| 14 |
+
|
| 15 |
+
Parameters
|
| 16 |
+
----------
|
| 17 |
+
collection:
|
| 18 |
+
MongoDB collection to query for the latest publishDate.
|
| 19 |
+
|
| 20 |
+
Returns
|
| 21 |
+
-------
|
| 22 |
+
datetime
|
| 23 |
+
Latest publish date found, or current date if collection is empty.
|
| 24 |
+
"""
|
| 25 |
+
latest_doc = collection.find_one(
|
| 26 |
+
sort=[("publishDate", -1)], projection={"publishDate": 1}
|
| 27 |
+
)
|
| 28 |
+
if latest_doc and "publishDate" in latest_doc:
|
| 29 |
+
return datetime.strptime(latest_doc["publishDate"], "%Y-%m-%d")
|
| 30 |
+
return datetime.today()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def _time_range(filter_type: str, collection) -> tuple[str, str]:
|
| 34 |
+
"""Calculate *inclusive* start / end date strings using rolling window approach.
|
| 35 |
+
|
| 36 |
+
Uses rolling window logic:
|
| 37 |
+
- today: only the latest date
|
| 38 |
+
- weekly: latest date - 6 days (total 7 days)
|
| 39 |
+
- monthly: latest date - 29 days (total 30 days)
|
| 40 |
+
|
| 41 |
+
Parameters
|
| 42 |
+
----------
|
| 43 |
+
filter_type:
|
| 44 |
+
One of ``today``, ``week``/``weekly`` or ``month``/``monthly``. Any
|
| 45 |
+
unrecognised value will fall back to *all time* where the start date is
|
| 46 |
+
``datetime.min``.
|
| 47 |
+
collection:
|
| 48 |
+
MongoDB collection to get the latest date from.
|
| 49 |
+
|
| 50 |
+
Returns
|
| 51 |
+
-------
|
| 52 |
+
tuple[str, str]
|
| 53 |
+
Start and end dates as strings in YYYY-MM-DD format.
|
| 54 |
+
"""
|
| 55 |
+
latest_date = _get_latest_publish_date_from_collection(collection)
|
| 56 |
+
|
| 57 |
+
if filter_type in {"today"}:
|
| 58 |
+
start = latest_date.date()
|
| 59 |
+
elif filter_type in {"week", "weekly"}:
|
| 60 |
+
# Latest date minus 6 days (total 7 days)
|
| 61 |
+
start = (latest_date - timedelta(days=6)).date()
|
| 62 |
+
elif filter_type in {"month", "monthly"}:
|
| 63 |
+
# Latest date minus 29 days (total 30 days)
|
| 64 |
+
start = (latest_date - timedelta(days=29)).date()
|
| 65 |
+
else:
|
| 66 |
+
start = datetime.min.date()
|
| 67 |
+
|
| 68 |
+
return str(start), str(latest_date.date())
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def get_content_flow_data(time_filter: str) -> Dict[str, Any]:
|
| 73 |
+
"""Return aggregated *Content Flow Tracker* data for the given period.
|
| 74 |
+
|
| 75 |
+
Uses rolling window approach:
|
| 76 |
+
- today: only the latest date
|
| 77 |
+
- weekly: latest date - 6 days (total 7 days)
|
| 78 |
+
- monthly: latest date - 29 days (total 30 days)
|
| 79 |
+
|
| 80 |
+
Parameters
|
| 81 |
+
----------
|
| 82 |
+
time_filter:
|
| 83 |
+
Time period filter ('today', 'week'/'weekly', 'month'/'monthly', or any other for all time).
|
| 84 |
+
|
| 85 |
+
Returns
|
| 86 |
+
-------
|
| 87 |
+
Dict[str, Any]
|
| 88 |
+
Dictionary containing title, dateRange, and aggregated content flow data.
|
| 89 |
+
"""
|
| 90 |
+
start, end = _time_range(time_filter, article_collection)
|
| 91 |
+
|
| 92 |
+
pipeline = [
|
| 93 |
+
{"$match": {"publishDate": {"$gte": start, "$lte": end}}},
|
| 94 |
+
{"$group": {"_id": {"source": "$site", "category": "$category"}, "count": {"$sum": 1}}},
|
| 95 |
+
{"$sort": {"count": -1}},
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
results = list(article_collection.aggregate(pipeline))
|
| 99 |
+
|
| 100 |
+
data = [
|
| 101 |
+
{
|
| 102 |
+
"category": r["_id"].get("category", "Uncategorized"),
|
| 103 |
+
"source": r["_id"]["source"],
|
| 104 |
+
"count": r["count"],
|
| 105 |
+
}
|
| 106 |
+
for r in results
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
return {
|
| 110 |
+
"title": f"Content Flow Tracker — {time_filter.capitalize()}",
|
| 111 |
+
"dateRange": {"start": start, "end": end},
|
| 112 |
+
"data": data,
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def get_entity_analysis_data(time_filter: str) -> Dict[str, Any]:
|
| 117 |
+
"""Return *Entity Analysis* data for the given period.
|
| 118 |
+
|
| 119 |
+
Uses rolling window approach:
|
| 120 |
+
- today: only the latest date
|
| 121 |
+
- weekly: latest date - 6 days (total 7 days)
|
| 122 |
+
- monthly: latest date - 29 days (total 30 days)
|
| 123 |
+
|
| 124 |
+
Parameters
|
| 125 |
+
----------
|
| 126 |
+
time_filter:
|
| 127 |
+
Time period filter ('today', 'week'/'weekly', 'month'/'monthly', or any other for all time).
|
| 128 |
+
|
| 129 |
+
Returns
|
| 130 |
+
-------
|
| 131 |
+
Dict[str, Any]
|
| 132 |
+
Dictionary containing title, dateRange, and aggregated entity analysis data.
|
| 133 |
+
"""
|
| 134 |
+
start, end = _time_range(time_filter, entity_collection)
|
| 135 |
+
|
| 136 |
+
pipeline = [
|
| 137 |
+
{"$match": {"publishDate": {"$gte": start, "$lte": end}}},
|
| 138 |
+
{"$group": {"_id": {"entity": "$entity", "type": "$entityType"},
|
| 139 |
+
"mentions": {"$sum": "$occurrence"}}},
|
| 140 |
+
{"$sort": {"mentions": -1}},
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
results = list(entity_collection.aggregate(pipeline))
|
| 144 |
+
|
| 145 |
+
type_full_names = {
|
| 146 |
+
"GPE": "Geopolitical Entities (Countries/Cities)",
|
| 147 |
+
"LOC": "Locations (Non-political)",
|
| 148 |
+
"ORG": "Organizations",
|
| 149 |
+
"PER": "People",
|
| 150 |
+
"PERSON": "People",
|
| 151 |
+
"PROD": "Products",
|
| 152 |
+
"PRODUCT": "Products",
|
| 153 |
+
"PRODCAT": "Product Categories",
|
| 154 |
+
"PRODUCT_CATEGORY": "Product Categories",
|
| 155 |
+
"COM": "Companies",
|
| 156 |
+
"EVENT": "Events",
|
| 157 |
+
"LANGUAGE": "Languages",
|
| 158 |
+
"NORP": "Nationalities/Religious/Political Groups",
|
| 159 |
+
"LAW": "Laws/Legal Documents",
|
| 160 |
+
"FAC": "Facilities/Landmarks",
|
| 161 |
+
"INS": "Industry Institutions",
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
entity_types: Dict[str, Any] = {}
|
| 165 |
+
for r in results:
|
| 166 |
+
e_type = r["_id"]["type"]
|
| 167 |
+
entity_name = r["_id"]["entity"].replace("_", " ")
|
| 168 |
+
if e_type not in entity_types:
|
| 169 |
+
entity_types[e_type] = {
|
| 170 |
+
"fullName": type_full_names.get(e_type, e_type),
|
| 171 |
+
"entities": [],
|
| 172 |
+
}
|
| 173 |
+
entity_types[e_type]["entities"].append(
|
| 174 |
+
{"entityName": entity_name, "mentions": r["mentions"]}
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# keep only the top 10 per type
|
| 178 |
+
for type_data in entity_types.values():
|
| 179 |
+
type_data["entities"] = sorted(
|
| 180 |
+
type_data["entities"], key=lambda x: -x["mentions"]
|
| 181 |
+
)[:10]
|
| 182 |
+
|
| 183 |
+
return {
|
| 184 |
+
"title": f"Top Entities - {time_filter.capitalize()}",
|
| 185 |
+
"dateRange": {"start": start, "end": end},
|
| 186 |
+
"data": entity_types,
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def get_sentiment_analysis_data(time_filter: str) -> Dict[str, Any]:
|
| 191 |
+
"""Return aggregated *Sentiment Analysis* data for articles by category for the given period.
|
| 192 |
+
|
| 193 |
+
Uses rolling window approach:
|
| 194 |
+
- today: only the latest date
|
| 195 |
+
- weekly: latest date - 6 days (total 7 days)
|
| 196 |
+
- monthly: latest date - 29 days (total 30 days)
|
| 197 |
+
|
| 198 |
+
Parameters
|
| 199 |
+
----------
|
| 200 |
+
time_filter:
|
| 201 |
+
Time period filter ('today', 'week'/'weekly', 'month'/'monthly', or any other for all time).
|
| 202 |
+
|
| 203 |
+
Returns
|
| 204 |
+
-------
|
| 205 |
+
Dict[str, Any]
|
| 206 |
+
Dictionary containing title, dateRange, and sentiment data by category and date.
|
| 207 |
+
"""
|
| 208 |
+
start, end = _time_range(time_filter, article_collection)
|
| 209 |
+
|
| 210 |
+
# Convert time_filter to match the original logic
|
| 211 |
+
if time_filter == "today":
|
| 212 |
+
start_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 213 |
+
num_days = 1
|
| 214 |
+
elif time_filter in {"week", "weekly"}:
|
| 215 |
+
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 216 |
+
num_days = 7
|
| 217 |
+
elif time_filter in {"month", "monthly"}:
|
| 218 |
+
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 219 |
+
num_days = 30
|
| 220 |
+
else:
|
| 221 |
+
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 222 |
+
end_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 223 |
+
num_days = (end_date - start_date).days + 1
|
| 224 |
+
|
| 225 |
+
# Query articles with sentiment scores
|
| 226 |
+
query = {
|
| 227 |
+
"publishDate": {"$gte": start, "$lte": end},
|
| 228 |
+
"sentimentScore": {"$exists": True}
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
docs = list(article_collection.find(query))
|
| 232 |
+
daily_scores = defaultdict(lambda: defaultdict(list))
|
| 233 |
+
|
| 234 |
+
# Aggregate sentiment scores by category and date
|
| 235 |
+
for doc in docs:
|
| 236 |
+
category = doc.get("category", "Unknown")
|
| 237 |
+
score = doc.get("sentimentScore")
|
| 238 |
+
pub_date = doc.get("publishDate")
|
| 239 |
+
if category and score is not None and pub_date:
|
| 240 |
+
daily_scores[category][pub_date].append(score)
|
| 241 |
+
|
| 242 |
+
# Generate nested data structure: date -> category -> sentiment
|
| 243 |
+
data = {}
|
| 244 |
+
for i in range(num_days):
|
| 245 |
+
day = (start_date + timedelta(days=i)).isoformat()
|
| 246 |
+
data[day] = {}
|
| 247 |
+
for category in daily_scores:
|
| 248 |
+
scores = daily_scores[category].get(day, [])
|
| 249 |
+
avg_score = sum(scores) / len(scores) if scores else None
|
| 250 |
+
data[day][category] = avg_score
|
| 251 |
+
|
| 252 |
+
return {
|
| 253 |
+
"title": f"Sentiment Analysis by Category — {time_filter.capitalize()}",
|
| 254 |
+
"dateRange": {"start": start, "end": end},
|
| 255 |
+
"data": data
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def get_entity_sentiment_data(time_filter: str = "weekly") -> Dict[str, Any]:
|
| 260 |
+
"""Return *Entity Sentiment Analysis* data for the given period.
|
| 261 |
+
|
| 262 |
+
Uses rolling window approach:
|
| 263 |
+
- today: only the latest date
|
| 264 |
+
- weekly: latest date - 6 days (total 7 days)
|
| 265 |
+
- monthly: latest date - 29 days (total 30 days)
|
| 266 |
+
|
| 267 |
+
Parameters
|
| 268 |
+
----------
|
| 269 |
+
time_filter:
|
| 270 |
+
Time period filter. Defaults to 'weekly' to match original behavior.
|
| 271 |
+
|
| 272 |
+
Returns
|
| 273 |
+
-------
|
| 274 |
+
Dict[str, Any]
|
| 275 |
+
Dictionary containing title, dateRange, and entity sentiment data.
|
| 276 |
+
"""
|
| 277 |
+
start, end = _time_range(time_filter, entity_collection)
|
| 278 |
+
|
| 279 |
+
# Convert to date for calculations
|
| 280 |
+
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 281 |
+
end_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 282 |
+
|
| 283 |
+
# Calculate num_days based on sentiment logic
|
| 284 |
+
if time_filter == "today":
|
| 285 |
+
num_days = 1
|
| 286 |
+
elif time_filter in {"week", "weekly"}:
|
| 287 |
+
num_days = 7
|
| 288 |
+
elif time_filter in {"month", "monthly"}:
|
| 289 |
+
num_days = 30
|
| 290 |
+
else:
|
| 291 |
+
num_days = (end_date - start_date).days + 1
|
| 292 |
+
|
| 293 |
+
# Query entities with sentiment scores
|
| 294 |
+
query = {
|
| 295 |
+
"publishDate": {"$gte": start, "$lte": end},
|
| 296 |
+
"sentimentScore": {"$exists": True},
|
| 297 |
+
"entity": {"$exists": True},
|
| 298 |
+
"entityType": {"$exists": True}
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
docs = list(entity_collection.find(query))
|
| 302 |
+
sentiment_by_type = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
|
| 303 |
+
|
| 304 |
+
# Aggregate sentiment scores by entity type, entity name, and date
|
| 305 |
+
for doc in docs:
|
| 306 |
+
entity = doc.get("entity", "Unknown")
|
| 307 |
+
entity_type = doc.get("entityType", "Unknown")
|
| 308 |
+
score = doc.get("sentimentScore")
|
| 309 |
+
pub_date = doc.get("publishDate")
|
| 310 |
+
|
| 311 |
+
if entity and entity_type and score is not None and pub_date:
|
| 312 |
+
sentiment_by_type[entity_type][entity][pub_date].append(score)
|
| 313 |
+
|
| 314 |
+
# Filter top 10 entities per entityType based on sentiment volatility (range)
|
| 315 |
+
top_n = 10
|
| 316 |
+
selected_entities = {}
|
| 317 |
+
|
| 318 |
+
for entity_type, entities in sentiment_by_type.items():
|
| 319 |
+
volatility_scores = {}
|
| 320 |
+
for entity, date_scores in entities.items():
|
| 321 |
+
# Calculate all sentiment values for this entity
|
| 322 |
+
all_values = []
|
| 323 |
+
for i in range(num_days):
|
| 324 |
+
day = (start_date + timedelta(days=i)).isoformat()
|
| 325 |
+
scores = date_scores.get(day, [])
|
| 326 |
+
avg = sum(scores) / len(scores) if scores else None
|
| 327 |
+
if avg is not None:
|
| 328 |
+
all_values.append(avg)
|
| 329 |
+
|
| 330 |
+
# Calculate volatility (range: max - min)
|
| 331 |
+
if len(all_values) > 1:
|
| 332 |
+
volatility = max(all_values) - min(all_values)
|
| 333 |
+
elif len(all_values) == 1:
|
| 334 |
+
volatility = abs(all_values[0]) # Use absolute value for single data point
|
| 335 |
+
else:
|
| 336 |
+
volatility = 0 # No data points
|
| 337 |
+
|
| 338 |
+
volatility_scores[entity] = volatility
|
| 339 |
+
|
| 340 |
+
# Select top N entities with highest volatility
|
| 341 |
+
top_entities = sorted(volatility_scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
|
| 342 |
+
selected_entities[entity_type] = [entity for entity, _ in top_entities]
|
| 343 |
+
|
| 344 |
+
# Generate nested data structure: entityType -> date -> entity -> sentiment
|
| 345 |
+
data = {}
|
| 346 |
+
for i in range(num_days):
|
| 347 |
+
day = (start_date + timedelta(days=i)).isoformat()
|
| 348 |
+
for entity_type, entities in sentiment_by_type.items():
|
| 349 |
+
if entity_type not in data:
|
| 350 |
+
data[entity_type] = {}
|
| 351 |
+
if day not in data[entity_type]:
|
| 352 |
+
data[entity_type][day] = {}
|
| 353 |
+
|
| 354 |
+
# Only include selected top entities
|
| 355 |
+
for entity in selected_entities[entity_type]:
|
| 356 |
+
date_scores = entities.get(entity, {})
|
| 357 |
+
scores = date_scores.get(day, [])
|
| 358 |
+
avg = sum(scores) / len(scores) if scores else None
|
| 359 |
+
data[entity_type][day][entity.replace("_", " ")] = avg
|
| 360 |
+
|
| 361 |
+
return {
|
| 362 |
+
"title": f"Entity Sentiment Analysis — {time_filter.capitalize()}",
|
| 363 |
+
"dateRange": {"start": start, "end": end},
|
| 364 |
+
"data": data
|
| 365 |
+
}
|
app/database/mongodb.py
CHANGED
|
@@ -4,4 +4,7 @@ from pymongo import MongoClient
|
|
| 4 |
|
| 5 |
MongodbClient = MongoClient(os.getenv('MONGODB_URI'))
|
| 6 |
FinFastMongodbClient = MongoClient(os.getenv("MONGODB_FINFAST_URI"))
|
|
|
|
| 7 |
category_collection = FinFastMongodbClient["FinFAST_China"]["Category"]
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
MongodbClient = MongoClient(os.getenv('MONGODB_URI'))
|
| 6 |
FinFastMongodbClient = MongoClient(os.getenv("MONGODB_FINFAST_URI"))
|
| 7 |
+
article_collection = FinFastMongodbClient["FinFAST_China"]["Article"]
|
| 8 |
category_collection = FinFastMongodbClient["FinFAST_China"]["Category"]
|
| 9 |
+
entity_collection = FinFastMongodbClient["FinFAST_China"]["Entity"]
|
| 10 |
+
|
app/requirements.txt
CHANGED
|
@@ -1,19 +1,26 @@
|
|
| 1 |
APScheduler==3.11.0
|
| 2 |
asgiref==3.9.1
|
| 3 |
blinker==1.9.0
|
|
|
|
|
|
|
| 4 |
click==8.2.1
|
| 5 |
colorama==0.4.6
|
| 6 |
dnspython==2.7.0
|
| 7 |
Flask==3.1.1
|
| 8 |
Flask-APScheduler==1.13.1
|
| 9 |
h11==0.16.0
|
|
|
|
| 10 |
itsdangerous==2.2.0
|
| 11 |
Jinja2==3.1.6
|
| 12 |
MarkupSafe==3.0.2
|
| 13 |
pymongo==3.12.0
|
| 14 |
python-dateutil==2.9.0.post0
|
|
|
|
|
|
|
| 15 |
six==1.17.0
|
| 16 |
tzdata==2025.2
|
| 17 |
tzlocal==5.3.1
|
| 18 |
uvicorn==0.35.0
|
| 19 |
Werkzeug==3.1.3
|
|
|
|
|
|
|
|
|
| 1 |
APScheduler==3.11.0
|
| 2 |
asgiref==3.9.1
|
| 3 |
blinker==1.9.0
|
| 4 |
+
certifi==2025.1.31
|
| 5 |
+
charset-normalizer==3.4.1
|
| 6 |
click==8.2.1
|
| 7 |
colorama==0.4.6
|
| 8 |
dnspython==2.7.0
|
| 9 |
Flask==3.1.1
|
| 10 |
Flask-APScheduler==1.13.1
|
| 11 |
h11==0.16.0
|
| 12 |
+
idna==3.10
|
| 13 |
itsdangerous==2.2.0
|
| 14 |
Jinja2==3.1.6
|
| 15 |
MarkupSafe==3.0.2
|
| 16 |
pymongo==3.12.0
|
| 17 |
python-dateutil==2.9.0.post0
|
| 18 |
+
pytz==2025.2
|
| 19 |
+
requests==2.32.3
|
| 20 |
six==1.17.0
|
| 21 |
tzdata==2025.2
|
| 22 |
tzlocal==5.3.1
|
| 23 |
uvicorn==0.35.0
|
| 24 |
Werkzeug==3.1.3
|
| 25 |
+
bidict==0.23.1
|
| 26 |
+
boto3==1.38.43
|
app/routes/__init__.py
CHANGED
|
@@ -2,3 +2,4 @@
|
|
| 2 |
from flask import Blueprint
|
| 3 |
|
| 4 |
category_bp = Blueprint("category", __name__)
|
|
|
|
|
|
| 2 |
from flask import Blueprint
|
| 3 |
|
| 4 |
category_bp = Blueprint("category", __name__)
|
| 5 |
+
summary_bp = Blueprint('summary', __name__)
|
app/routes/summary.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""This module defines the /summary route for the Flask application."""
|
| 2 |
+
|
| 3 |
+
import importlib
|
| 4 |
+
from flask import jsonify
|
| 5 |
+
from controllers.summary import get_summary_data
|
| 6 |
+
from . import summary_bp
|
| 7 |
+
|
| 8 |
+
@summary_bp.route('', methods=['GET'])
|
| 9 |
+
def get_summary():
|
| 10 |
+
"""
|
| 11 |
+
Generate a summary dashboard with content flow and entity analysis data.
|
| 12 |
+
|
| 13 |
+
This endpoint provides a complete summary overview, including:
|
| 14 |
+
- Content Flow Tracker: Article counts by source and category
|
| 15 |
+
- Entity Analysis: Top entities by type with mentions
|
| 16 |
+
|
| 17 |
+
All data is returned together, divided into three time periods: today, week, and month.
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
JSONResponse: A JSON response containing the complete summary dashboard data:
|
| 21 |
+
{
|
| 22 |
+
"content": {"today": {...}, "week": {...}, "month": {...}},
|
| 23 |
+
"entity": {"today": {...}, "week": {...}, "month": {...}}
|
| 24 |
+
}
|
| 25 |
+
"""
|
| 26 |
+
summary_data = get_summary_data()
|
| 27 |
+
return jsonify(summary_data)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@summary_bp.route('/<string:module>/<string:chart_id>', methods=['GET'])
|
| 31 |
+
def get_summary_chart(module, chart_id):
|
| 32 |
+
"""
|
| 33 |
+
Handles GET requests to the summary route with a specific module and chart ID.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
module (str): The module identifier (content or entity).
|
| 37 |
+
chart_id (str): The chart identifier (today, weekly, monthly).
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
tuple: The result of the chart's process function and HTTP status code 200.
|
| 41 |
+
|
| 42 |
+
Raises:
|
| 43 |
+
ImportError: If the specified chart module cannot be imported.
|
| 44 |
+
AttributeError: If the imported module does not have a 'process' function.
|
| 45 |
+
|
| 46 |
+
Endpoint:
|
| 47 |
+
GET /<module>/<chart_id>
|
| 48 |
+
"""
|
| 49 |
+
result = importlib.import_module(f"controllers.summary.{module}.{chart_id}").process()
|
| 50 |
+
return jsonify(result), 200
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@summary_bp.route('/<string:module>', methods=['GET'])
|
| 54 |
+
def get_summary_module(module):
|
| 55 |
+
"""
|
| 56 |
+
Handles GET requests to the summary route for a specific module.
|
| 57 |
+
Triggers the process for each chart under this module concurrently.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
module (str): The module identifier (content or entity).
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
dict: {"module": module, "charts": [chart1, chart2, ...]}
|
| 64 |
+
|
| 65 |
+
Raises:
|
| 66 |
+
ImportError: If the specified module cannot be imported.
|
| 67 |
+
"""
|
| 68 |
+
result = importlib.import_module("controllers.summary").process(module)
|
| 69 |
+
return jsonify(result), 200
|