Commit
·
2646146
1
Parent(s):
35830b5
fix: all pylint errors
Browse files- app/__init__.py +0 -0
- app/app.py +12 -6
- app/collectors/category_update.py +261 -0
- app/collectors/finfast/article.py +18 -26
- app/collectors/finfast/entity.py +4 -12
- app/collectors/finfast/utils.py +9 -1
- app/collectors/utils.py +98 -0
- app/controllers/category.py +1 -1
- app/controllers/summary/__init__.py +4 -3
- app/controllers/summary/content/__init__.py +1 -1
- app/controllers/summary/content/weekly.py +1 -1
- app/controllers/summary/entity/__init__.py +1 -1
- app/controllers/summary/sentiment/__init__.py +1 -1
- app/controllers/summary/utils.py +89 -66
- app/database/__init__.py +1 -1
- app/database/mongodb.py +10 -1
- app/routes/__init__.py +1 -1
- app/routes/category_router.py +1 -1
- app/routes/summary.py +1 -1
- jobs.json +8 -0
app/__init__.py
ADDED
|
File without changes
|
app/app.py
CHANGED
|
@@ -1,22 +1,28 @@
|
|
| 1 |
"""Flask application entry point."""
|
|
|
|
|
|
|
| 2 |
import json
|
| 3 |
import logging
|
| 4 |
from flask import Flask
|
| 5 |
from flask_apscheduler import APScheduler
|
| 6 |
from asgiref.wsgi import WsgiToAsgi
|
| 7 |
-
from routes
|
| 8 |
-
from routes.summary import summary_bp
|
| 9 |
|
|
|
|
| 10 |
class Config:
|
| 11 |
"""
|
| 12 |
Config class for application settings.
|
| 13 |
|
| 14 |
Attributes:
|
| 15 |
-
|
| 16 |
"""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def create_app():
|
| 22 |
"""
|
|
|
|
| 1 |
"""Flask application entry point."""
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
import json
|
| 5 |
import logging
|
| 6 |
from flask import Flask
|
| 7 |
from flask_apscheduler import APScheduler
|
| 8 |
from asgiref.wsgi import WsgiToAsgi
|
| 9 |
+
from app.routes import category_bp, summary_bp
|
|
|
|
| 10 |
|
| 11 |
+
@dataclass
|
| 12 |
class Config:
|
| 13 |
"""
|
| 14 |
Config class for application settings.
|
| 15 |
|
| 16 |
Attributes:
|
| 17 |
+
scheduler_api_enabled (bool): Indicates whether the scheduler's API is enabled.
|
| 18 |
"""
|
| 19 |
+
scheduler_api_enabled: bool = True
|
| 20 |
+
jobs: dict = None
|
| 21 |
+
|
| 22 |
+
def __post_init__(self):
|
| 23 |
+
if self.jobs is None:
|
| 24 |
+
with open('jobs.json', 'r', encoding='utf-8') as jobs_file:
|
| 25 |
+
self.jobs = json.load(jobs_file)
|
| 26 |
|
| 27 |
def create_app():
|
| 28 |
"""
|
app/collectors/category_update.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Script to update category collection in MongoDB with sites from Article_China DynamoDB.
|
| 3 |
+
Reads records from Article_China based on a delta parameter for lastModifiedDate,
|
| 4 |
+
extracts unique site-category pairs from specified categories, and updates
|
| 5 |
+
MongoDB category collection with aggregated data.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
import datetime
|
| 10 |
+
from typing import Dict, List, Tuple
|
| 11 |
+
from collections import defaultdict
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
from botocore.exceptions import ClientError
|
| 14 |
+
from .utils import get_client_connection
|
| 15 |
+
from ..database.mongodb import category_collection
|
| 16 |
+
|
| 17 |
+
# Configure logging
|
| 18 |
+
logging.basicConfig(
|
| 19 |
+
level=logging.INFO,
|
| 20 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 21 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 22 |
+
)
|
| 23 |
+
logger = logging.getLogger('category_update')
|
| 24 |
+
|
| 25 |
+
# DynamoDB table name
|
| 26 |
+
ARTICLE_CHINA_TABLE = 'Article_China'
|
| 27 |
+
SCAN_LIMIT = 50 # Limit for scan operations as requested
|
| 28 |
+
|
| 29 |
+
# Target categories with unknown site lists
|
| 30 |
+
TARGET_CATEGORIES = [
|
| 31 |
+
"Dragon Street China Markets",
|
| 32 |
+
"Beijing Briefs",
|
| 33 |
+
"Knowledge Hub"
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class CategoryUpdater:
|
| 38 |
+
"""Manages the collection and updating of category-site relationships from DynamoDB to MongoDB.
|
| 39 |
+
|
| 40 |
+
This class handles the complete workflow of:
|
| 41 |
+
1. Querying recent articles from DynamoDB's Article_China table
|
| 42 |
+
2. Extracting unique site-category pairs
|
| 43 |
+
3. Grouping sites by their categories
|
| 44 |
+
4. Updating MongoDB with the latest category-site relationships
|
| 45 |
+
|
| 46 |
+
The class supports both incremental updates (via delta days) and full refreshes.
|
| 47 |
+
|
| 48 |
+
Attributes:
|
| 49 |
+
delta (int): Default lookback period in days for incremental updates (-1 for full refresh)
|
| 50 |
+
logger (Logger): Configured logger instance for tracking operations
|
| 51 |
+
|
| 52 |
+
Typical usage example:
|
| 53 |
+
>>> updater = CategoryUpdater()
|
| 54 |
+
>>> updater.collect() # Default 1-day delta
|
| 55 |
+
>>> updater.collect(delta=7) # Weekly refresh
|
| 56 |
+
>>> updater.collect(delta=-1) # Full rebuild
|
| 57 |
+
"""
|
| 58 |
+
#def __init__(self):
|
| 59 |
+
# self.delta = 1 Default delta value
|
| 60 |
+
delta: int = 1 # Now a type-hinted class field with default
|
| 61 |
+
|
| 62 |
+
def get_articles_by_delta(delta: int) -> List[Dict]:
|
| 63 |
+
"""
|
| 64 |
+
Query Article_China based on delta parameter and target categories.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
delta: Number of days to look back. If -1, get all records.
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
List of article records matching the criteria
|
| 71 |
+
"""
|
| 72 |
+
dynamodb = get_client_connection()
|
| 73 |
+
articles = []
|
| 74 |
+
|
| 75 |
+
try:
|
| 76 |
+
# Format target categories for filter expression
|
| 77 |
+
target_categories_values = {}
|
| 78 |
+
filter_conditions = []
|
| 79 |
+
|
| 80 |
+
for i, category in enumerate(TARGET_CATEGORIES):
|
| 81 |
+
attribute_name = f':category{i}'
|
| 82 |
+
target_categories_values[attribute_name] = {'S': category}
|
| 83 |
+
filter_conditions.append(f"category = {attribute_name}")
|
| 84 |
+
|
| 85 |
+
category_filter = f"({' OR '.join(filter_conditions)})"
|
| 86 |
+
|
| 87 |
+
if delta == -1:
|
| 88 |
+
logger.info("Retrieving all articles from Article_China for target categories")
|
| 89 |
+
# Scan with only category filter
|
| 90 |
+
scan_params = {
|
| 91 |
+
'TableName': ARTICLE_CHINA_TABLE,
|
| 92 |
+
'FilterExpression': category_filter,
|
| 93 |
+
'ExpressionAttributeValues': target_categories_values,
|
| 94 |
+
'Limit': SCAN_LIMIT
|
| 95 |
+
}
|
| 96 |
+
else:
|
| 97 |
+
# Calculate cutoff date
|
| 98 |
+
cutoff_date = (datetime.datetime.now() - datetime.timedelta(days
|
| 99 |
+
=delta)).strftime('%Y-%m-%dT%H:%M:%S')
|
| 100 |
+
logger.info("Retrieving articles modified after %s for target categories", cutoff_date)
|
| 101 |
+
|
| 102 |
+
# Add date filter to expression attribute values
|
| 103 |
+
target_categories_values[':cutoff_date'] = {'S': cutoff_date}
|
| 104 |
+
|
| 105 |
+
scan_params = {
|
| 106 |
+
'TableName': ARTICLE_CHINA_TABLE,
|
| 107 |
+
'FilterExpression': f"LastModifiedDate >= :cutoff_date AND {category_filter}",
|
| 108 |
+
'ExpressionAttributeValues': target_categories_values,
|
| 109 |
+
'Limit': SCAN_LIMIT
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
# Perform initial scan
|
| 113 |
+
response = dynamodb.scan(**scan_params)
|
| 114 |
+
articles.extend(response.get('Items', []))
|
| 115 |
+
|
| 116 |
+
# Continue scanning if there are more items
|
| 117 |
+
while 'LastEvaluatedKey' in response:
|
| 118 |
+
logger.debug("Continuing scan, found %s articles so far", len(articles))
|
| 119 |
+
scan_params['ExclusiveStartKey'] = response['LastEvaluatedKey']
|
| 120 |
+
response = dynamodb.scan(**scan_params)
|
| 121 |
+
articles.extend(response.get('Items', []))
|
| 122 |
+
|
| 123 |
+
logger.info("Retrieved %s articles total", len(articles))
|
| 124 |
+
return articles
|
| 125 |
+
|
| 126 |
+
except ClientError as e:
|
| 127 |
+
logger.error("Error scanning Article_China table: %s", e)
|
| 128 |
+
raise
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def extract_unique_site_categories(articles: List[Dict]) -> List[Tuple[str, str]]:
|
| 132 |
+
"""
|
| 133 |
+
Extract unique site-category pairs from articles.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
articles: List of article records
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
List of tuples containing (site, category) pairs
|
| 140 |
+
"""
|
| 141 |
+
site_category_pairs = set()
|
| 142 |
+
|
| 143 |
+
try:
|
| 144 |
+
for article in articles:
|
| 145 |
+
site = article.get('site', {}).get('S')
|
| 146 |
+
category = article.get('category', {}).get('S')
|
| 147 |
+
|
| 148 |
+
if site and category:
|
| 149 |
+
site_category_pairs.add((site, category))
|
| 150 |
+
|
| 151 |
+
result = list(site_category_pairs)
|
| 152 |
+
logger.info("Extracted %s unique site-category pairs", len(result))
|
| 153 |
+
return result
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
logger.error("Error extracting site-category pairs: %s", e)
|
| 157 |
+
raise
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def group_sites_by_category(site_category_pairs: List[Tuple[str, str]]) -> Dict[str, List[str]]:
|
| 161 |
+
"""
|
| 162 |
+
Group sites by category.
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
site_category_pairs: List of (site, category) tuples
|
| 166 |
+
|
| 167 |
+
Returns:
|
| 168 |
+
Dictionary mapping categories to lists of sites
|
| 169 |
+
"""
|
| 170 |
+
category_sites = defaultdict(set)
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
for site, category in site_category_pairs:
|
| 174 |
+
category_sites[category].add(site)
|
| 175 |
+
|
| 176 |
+
# Convert sets to lists for JSON serialization
|
| 177 |
+
result = {category: list(sites) for category, sites in category_sites.items()}
|
| 178 |
+
logger.info("Grouped sites into %s categories", len(result))
|
| 179 |
+
return result
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logger.error("Error grouping sites by category: %s", e)
|
| 183 |
+
raise
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def update_mongodb_categories(category_sites: Dict[str, List[str]]) -> None:
|
| 187 |
+
"""
|
| 188 |
+
Update MongoDB category collection with category-sites mapping.
|
| 189 |
+
|
| 190 |
+
category_collection is imported from mongodb.py in database folder
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
category_sites: Dictionary mapping categories to lists of sites
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
try:
|
| 197 |
+
if not category_sites:
|
| 198 |
+
logger.info("No category-sites mappings to add to MongoDB")
|
| 199 |
+
return
|
| 200 |
+
|
| 201 |
+
logger.info("Updating %s categories in MongoDB", len(category_sites))
|
| 202 |
+
|
| 203 |
+
# Update each category document
|
| 204 |
+
for category, sites in category_sites.items():
|
| 205 |
+
try:
|
| 206 |
+
# Use upsert with $addToSet to add unique sites to the array
|
| 207 |
+
result = category_collection.update_one(
|
| 208 |
+
{"_id": category},
|
| 209 |
+
{
|
| 210 |
+
"$set": {"category": category},
|
| 211 |
+
"$addToSet": {"site": {"$each": sites}}
|
| 212 |
+
},
|
| 213 |
+
upsert=True
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
if result.upserted_id:
|
| 217 |
+
logger.info("Created new category '%s' with %s sites", category, len(sites))
|
| 218 |
+
else:
|
| 219 |
+
logger.info("Updated category '%s' with %s sites", category, len(sites))
|
| 220 |
+
|
| 221 |
+
except Exception as e:
|
| 222 |
+
logger.error("Error updating category '%s' in MongoDB: %s", category, e)
|
| 223 |
+
raise
|
| 224 |
+
|
| 225 |
+
except Exception as e:
|
| 226 |
+
logger.error("Error updating MongoDB categories: %s", e)
|
| 227 |
+
raise
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def collect(delta: int = 1) -> None:
|
| 231 |
+
"""
|
| 232 |
+
Main function to update MongoDB category collection with site-category pairs from Article_China.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
delta: Number of days to look back for modified articles.
|
| 236 |
+
If -1, get all articles.
|
| 237 |
+
"""
|
| 238 |
+
try:
|
| 239 |
+
logger.info("Starting category update with delta = %s", delta)
|
| 240 |
+
|
| 241 |
+
# Get articles based on delta and target categories
|
| 242 |
+
articles = get_articles_by_delta(delta)
|
| 243 |
+
|
| 244 |
+
# Extract unique site-category pairs
|
| 245 |
+
site_category_pairs = extract_unique_site_categories(articles)
|
| 246 |
+
|
| 247 |
+
if not site_category_pairs:
|
| 248 |
+
logger.info("No site-category pairs found in articles, nothing to update")
|
| 249 |
+
return
|
| 250 |
+
|
| 251 |
+
# Group sites by category
|
| 252 |
+
category_sites = group_sites_by_category(site_category_pairs)
|
| 253 |
+
|
| 254 |
+
# Update MongoDB with category-sites mapping
|
| 255 |
+
update_mongodb_categories(category_sites)
|
| 256 |
+
|
| 257 |
+
logger.info("Category update completed successfully")
|
| 258 |
+
|
| 259 |
+
except Exception as e:
|
| 260 |
+
logger.error("Category update failed: %s", e)
|
| 261 |
+
raise
|
app/collectors/finfast/article.py
CHANGED
|
@@ -1,12 +1,9 @@
|
|
| 1 |
"""Module for collecting and managing article data from DynamoDB to MongoDB."""
|
| 2 |
from venv import logger
|
| 3 |
from datetime import datetime, timedelta
|
| 4 |
-
from database import FinFastMongoClient as MongodbClient
|
| 5 |
from pymongo.errors import PyMongoError
|
| 6 |
-
from .
|
| 7 |
-
|
| 8 |
-
collection = MongodbClient["FinFAST_China"]["Article"]
|
| 9 |
-
|
| 10 |
|
| 11 |
def _process_article_item(item):
|
| 12 |
"""
|
|
@@ -28,27 +25,23 @@ def _process_article_item(item):
|
|
| 28 |
item["_id"] = item.pop("id", None)
|
| 29 |
|
| 30 |
# Convert entityList inner values to float (for MongoDB compatibility)
|
| 31 |
-
if "entityList" in item
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
# Upsert into MongoDB
|
| 46 |
-
|
| 47 |
-
{'_id': item['_id']},
|
| 48 |
-
{'$set': item},
|
| 49 |
-
upsert=True
|
| 50 |
-
)
|
| 51 |
-
print(f"Successfully processed item: {item['_id']}")
|
| 52 |
|
| 53 |
except (ValueError, KeyError, TypeError, PyMongoError) as e:
|
| 54 |
logger.error("Error processing item with _id %s: %s",
|
|
@@ -111,5 +104,4 @@ def collect():
|
|
| 111 |
upsert_documents(filter_date)
|
| 112 |
|
| 113 |
# Delete documents older than 60 days
|
| 114 |
-
delete_old_documents(
|
| 115 |
-
|
|
|
|
| 1 |
"""Module for collecting and managing article data from DynamoDB to MongoDB."""
|
| 2 |
from venv import logger
|
| 3 |
from datetime import datetime, timedelta
|
|
|
|
| 4 |
from pymongo.errors import PyMongoError
|
| 5 |
+
from ...database.mongodb import article_collection
|
| 6 |
+
from .utils import scan_dynamodb_table, delete_old_documents, upsert_item
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def _process_article_item(item):
|
| 9 |
"""
|
|
|
|
| 25 |
item["_id"] = item.pop("id", None)
|
| 26 |
|
| 27 |
# Convert entityList inner values to float (for MongoDB compatibility)
|
| 28 |
+
if "entityList" not in item or not isinstance(item["entityList"], list):
|
| 29 |
+
return
|
| 30 |
+
for entity in item["entityList"]:
|
| 31 |
+
if isinstance(entity, dict):
|
| 32 |
+
if "sentimentScore" in entity:
|
| 33 |
+
try:
|
| 34 |
+
entity["sentimentScore"] = float(entity["sentimentScore"])
|
| 35 |
+
except (ValueError, TypeError):
|
| 36 |
+
entity["sentimentScore"] = 0.0
|
| 37 |
+
if "occurrence" in entity:
|
| 38 |
+
try:
|
| 39 |
+
entity["occurrence"] = float(entity["occurrence"])
|
| 40 |
+
except (ValueError, TypeError):
|
| 41 |
+
entity["occurrence"] = 0.0
|
| 42 |
|
| 43 |
# Upsert into MongoDB
|
| 44 |
+
upsert_item(article_collection, item)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
except (ValueError, KeyError, TypeError, PyMongoError) as e:
|
| 47 |
logger.error("Error processing item with _id %s: %s",
|
|
|
|
| 104 |
upsert_documents(filter_date)
|
| 105 |
|
| 106 |
# Delete documents older than 60 days
|
| 107 |
+
delete_old_documents(article_collection, filter_date, logger)
|
|
|
app/collectors/finfast/entity.py
CHANGED
|
@@ -1,12 +1,8 @@
|
|
| 1 |
"""Module for collecting and managing entity data from DynamoDB to MongoDB."""
|
| 2 |
from datetime import datetime, timedelta
|
| 3 |
-
from database import FinFastMongoClient as MongodbClient
|
| 4 |
from pymongo.errors import PyMongoError
|
| 5 |
-
from .
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
entity_collection = MongodbClient["FinFAST_China"]["Entity"]
|
| 9 |
-
|
| 10 |
|
| 11 |
def _process_entity_item(item):
|
| 12 |
"""
|
|
@@ -30,11 +26,8 @@ def _process_entity_item(item):
|
|
| 30 |
item["_id"] = f"{item.get('entity', '')}-{item.get('articleID', '')}"
|
| 31 |
|
| 32 |
# Upsert into MongoDB
|
| 33 |
-
entity_collection
|
| 34 |
-
|
| 35 |
-
{'$set': item},
|
| 36 |
-
upsert=True
|
| 37 |
-
)
|
| 38 |
print(f"Successfully processed item: {item['_id']}")
|
| 39 |
|
| 40 |
except (ValueError, KeyError, TypeError, PyMongoError) as e:
|
|
@@ -100,4 +93,3 @@ def collect():
|
|
| 100 |
|
| 101 |
# Delete documents older than 30 days
|
| 102 |
delete_old_documents(entity_collection, filter_date)
|
| 103 |
-
|
|
|
|
| 1 |
"""Module for collecting and managing entity data from DynamoDB to MongoDB."""
|
| 2 |
from datetime import datetime, timedelta
|
|
|
|
| 3 |
from pymongo.errors import PyMongoError
|
| 4 |
+
from ...database.mongodb import entity_collection
|
| 5 |
+
from .utils import scan_dynamodb_table, delete_old_documents, upsert_item
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def _process_entity_item(item):
|
| 8 |
"""
|
|
|
|
| 26 |
item["_id"] = f"{item.get('entity', '')}-{item.get('articleID', '')}"
|
| 27 |
|
| 28 |
# Upsert into MongoDB
|
| 29 |
+
upsert_item(entity_collection, item)
|
| 30 |
+
|
|
|
|
|
|
|
|
|
|
| 31 |
print(f"Successfully processed item: {item['_id']}")
|
| 32 |
|
| 33 |
except (ValueError, KeyError, TypeError, PyMongoError) as e:
|
|
|
|
| 93 |
|
| 94 |
# Delete documents older than 30 days
|
| 95 |
delete_old_documents(entity_collection, filter_date)
|
|
|
app/collectors/finfast/utils.py
CHANGED
|
@@ -105,4 +105,12 @@ def delete_old_documents(collection, cutoff_date, use_logger=None):
|
|
| 105 |
else:
|
| 106 |
print(error_message)
|
| 107 |
raise
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
print(error_message)
|
| 107 |
raise
|
| 108 |
+
|
| 109 |
+
def upsert_item(collection, item):
|
| 110 |
+
"""Helper function to upsert an item into a MongoDB collection."""
|
| 111 |
+
collection.update_one(
|
| 112 |
+
{'_id': item['_id']},
|
| 113 |
+
{'$set': item},
|
| 114 |
+
upsert=True
|
| 115 |
+
)
|
| 116 |
+
print(f"Successfully processed item: {item['_id']}")
|
app/collectors/utils.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utilis Functions"""
|
| 2 |
+
import os
|
| 3 |
+
import glob
|
| 4 |
+
import boto3
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 8 |
+
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 9 |
+
|
| 10 |
+
#Downloads .parquet files from an S3 bucket and concatenates them into a single pandas DataFrame.
|
| 11 |
+
def download_files_from_s3(folder):
|
| 12 |
+
"""Download Data Files"""
|
| 13 |
+
if not os.path.exists(folder):
|
| 14 |
+
os.makedirs(folder)
|
| 15 |
+
client = boto3.client(
|
| 16 |
+
's3',
|
| 17 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
| 18 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
| 19 |
+
)
|
| 20 |
+
response = client.list_objects_v2(Bucket='finfast-china', Prefix=f"{folder}/")
|
| 21 |
+
for obj in response['Contents']:
|
| 22 |
+
key = obj['Key']
|
| 23 |
+
if key.endswith('.parquet'):
|
| 24 |
+
client.download_file('finfast-china', key, key)
|
| 25 |
+
file_paths = glob.glob(os.path.join(folder, '*.parquet'))
|
| 26 |
+
return pd.concat([pd.read_parquet(file_path) for file_path in file_paths], ignore_index=True)
|
| 27 |
+
|
| 28 |
+
# Returns a DynamoDB client connection.
|
| 29 |
+
def get_client_connection():
|
| 30 |
+
"""Get dynamoDB connection"""
|
| 31 |
+
dynamodb = boto3.client(
|
| 32 |
+
service_name='dynamodb',
|
| 33 |
+
region_name='us-east-1',
|
| 34 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
| 35 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
| 36 |
+
)
|
| 37 |
+
return dynamodb
|
| 38 |
+
|
| 39 |
+
# Updates an entity in the specified DynamoDB table.
|
| 40 |
+
def update_entity(table_name, row):
|
| 41 |
+
"""update entity data to db"""
|
| 42 |
+
dynamodb = get_client_connection()
|
| 43 |
+
response = dynamodb.update_item(
|
| 44 |
+
TableName=table_name,
|
| 45 |
+
Key={
|
| 46 |
+
'entity': {'S': row['entity']},
|
| 47 |
+
'entityType': {'S': row['entitytype']}
|
| 48 |
+
},
|
| 49 |
+
UpdateExpression='SET total_occurrence = :total_occurrence',
|
| 50 |
+
ExpressionAttributeValues={
|
| 51 |
+
':total_occurrence': {'N': str(row['total_occurrence'])}
|
| 52 |
+
}
|
| 53 |
+
)
|
| 54 |
+
print(response)
|
| 55 |
+
|
| 56 |
+
# Updates a category in the specified DynamoDB table.
|
| 57 |
+
def update_category(table_name, row):
|
| 58 |
+
"""update category data to db"""
|
| 59 |
+
dynamodb = get_client_connection()
|
| 60 |
+
response = dynamodb.update_item(
|
| 61 |
+
TableName=table_name,
|
| 62 |
+
Key={
|
| 63 |
+
'site': {'S': row['site']},
|
| 64 |
+
'category': {'S': row['category']}
|
| 65 |
+
},
|
| 66 |
+
UpdateExpression='SET cnt = :cnt',
|
| 67 |
+
ExpressionAttributeValues={
|
| 68 |
+
':cnt': {'N': str(row['count'])},
|
| 69 |
+
}
|
| 70 |
+
)
|
| 71 |
+
print(response)
|
| 72 |
+
|
| 73 |
+
# Deletes an entity from the specified DynamoDB table.
|
| 74 |
+
def delete_entity(table_name, row):
|
| 75 |
+
"""delete entity from db"""
|
| 76 |
+
dynamodb = get_client_connection()
|
| 77 |
+
dynamodb.delete_item(
|
| 78 |
+
TableName=table_name,
|
| 79 |
+
Key={
|
| 80 |
+
'entity': {'S': row['entity']},
|
| 81 |
+
'entityType': {'S': row['entityType']}
|
| 82 |
+
}
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Scans the specified DynamoDB table and deletes all items.
|
| 86 |
+
def scan(table_name):
|
| 87 |
+
"""scan record from db"""
|
| 88 |
+
dynamodb = get_client_connection()
|
| 89 |
+
response = dynamodb.scan(TableName=table_name)
|
| 90 |
+
while 'LastEvaluatedKey' in response:
|
| 91 |
+
for item in response['Items']:
|
| 92 |
+
dynamodb.delete_item(
|
| 93 |
+
TableName=table_name,
|
| 94 |
+
Key=dict(item)
|
| 95 |
+
)
|
| 96 |
+
response = dynamodb.scan(TableName=table_name,
|
| 97 |
+
ExclusiveStartKey=response['LastEvaluatedKey'])
|
| 98 |
+
return response
|
app/controllers/category.py
CHANGED
|
@@ -4,7 +4,7 @@ Category Controller - Business logic for handling category data.
|
|
| 4 |
This module contains functions that interact with the database
|
| 5 |
to fetch and process data sorted by category
|
| 6 |
"""
|
| 7 |
-
from database.mongodb import category_collection
|
| 8 |
def get_categories():
|
| 9 |
|
| 10 |
"""
|
|
|
|
| 4 |
This module contains functions that interact with the database
|
| 5 |
to fetch and process data sorted by category
|
| 6 |
"""
|
| 7 |
+
from ..database.mongodb import category_collection
|
| 8 |
def get_categories():
|
| 9 |
|
| 10 |
"""
|
app/controllers/summary/__init__.py
CHANGED
|
@@ -3,8 +3,8 @@ import os
|
|
| 3 |
import importlib
|
| 4 |
from concurrent.futures import ThreadPoolExecutor
|
| 5 |
from typing import Dict, Any
|
| 6 |
-
from .utils import get_content_flow_data, get_entity_analysis_data
|
| 7 |
-
|
| 8 |
|
| 9 |
def _run_process(args):
|
| 10 |
"""
|
|
@@ -55,7 +55,8 @@ def process(module):
|
|
| 55 |
return charts
|
| 56 |
|
| 57 |
|
| 58 |
-
def get_summary_data(include_content: bool = True,
|
|
|
|
| 59 |
"""
|
| 60 |
Get complete summary dashboard data for all time periods.
|
| 61 |
|
|
|
|
| 3 |
import importlib
|
| 4 |
from concurrent.futures import ThreadPoolExecutor
|
| 5 |
from typing import Dict, Any
|
| 6 |
+
from .utils import get_content_flow_data, get_entity_analysis_data
|
| 7 |
+
from .utils import get_sentiment_analysis_data, get_entity_sentiment_data
|
| 8 |
|
| 9 |
def _run_process(args):
|
| 10 |
"""
|
|
|
|
| 55 |
return charts
|
| 56 |
|
| 57 |
|
| 58 |
+
def get_summary_data(include_content: bool = True,
|
| 59 |
+
include_entity: bool = True, include_sentiment: bool = True) -> Dict[str, Any]:
|
| 60 |
"""
|
| 61 |
Get complete summary dashboard data for all time periods.
|
| 62 |
|
app/controllers/summary/content/__init__.py
CHANGED
|
@@ -26,4 +26,4 @@ __all__ = [
|
|
| 26 |
"get_today_content_flow_data",
|
| 27 |
"get_weekly_content_flow_data",
|
| 28 |
"get_monthly_content_flow_data",
|
| 29 |
-
]
|
|
|
|
| 26 |
"get_today_content_flow_data",
|
| 27 |
"get_weekly_content_flow_data",
|
| 28 |
"get_monthly_content_flow_data",
|
| 29 |
+
]
|
app/controllers/summary/content/weekly.py
CHANGED
|
@@ -9,4 +9,4 @@ from ..utils import get_content_flow_data
|
|
| 9 |
|
| 10 |
def process():
|
| 11 |
"""Return Content Flow Tracker data for the *latest 7 days*."""
|
| 12 |
-
return get_content_flow_data("week")
|
|
|
|
| 9 |
|
| 10 |
def process():
|
| 11 |
"""Return Content Flow Tracker data for the *latest 7 days*."""
|
| 12 |
+
return get_content_flow_data("week")
|
app/controllers/summary/entity/__init__.py
CHANGED
|
@@ -24,4 +24,4 @@ __all__ = [
|
|
| 24 |
"get_today_entity_analysis_data",
|
| 25 |
"get_weekly_entity_analysis_data",
|
| 26 |
"get_monthly_entity_analysis_data",
|
| 27 |
-
]
|
|
|
|
| 24 |
"get_today_entity_analysis_data",
|
| 25 |
"get_weekly_entity_analysis_data",
|
| 26 |
"get_monthly_entity_analysis_data",
|
| 27 |
+
]
|
app/controllers/summary/sentiment/__init__.py
CHANGED
|
@@ -35,4 +35,4 @@ __all__ = [
|
|
| 35 |
"get_monthly_sentiment_data",
|
| 36 |
"get_entity_sentiment_data",
|
| 37 |
"get_entities_sentiment_data",
|
| 38 |
-
]
|
|
|
|
| 35 |
"get_monthly_sentiment_data",
|
| 36 |
"get_entity_sentiment_data",
|
| 37 |
"get_entities_sentiment_data",
|
| 38 |
+
]
|
app/controllers/summary/utils.py
CHANGED
|
@@ -3,10 +3,10 @@ This module contains utility functions for both Content Flow Tracker and Entity
|
|
| 3 |
extracted and merged from the previous content/utils.py and entity/utils.py files.
|
| 4 |
"""
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
-
from typing import Dict, Any
|
| 7 |
from collections import defaultdict
|
| 8 |
|
| 9 |
-
from database.mongodb import article_collection, entity_collection
|
| 10 |
|
| 11 |
|
| 12 |
def _get_latest_publish_date_from_collection(collection) -> datetime:
|
|
@@ -206,32 +206,27 @@ def get_sentiment_analysis_data(time_filter: str) -> Dict[str, Any]:
|
|
| 206 |
Dictionary containing title, dateRange, and sentiment data by category and date.
|
| 207 |
"""
|
| 208 |
start, end = _time_range(time_filter, article_collection)
|
|
|
|
| 209 |
|
| 210 |
-
#
|
| 211 |
if time_filter == "today":
|
| 212 |
-
start_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 213 |
num_days = 1
|
| 214 |
elif time_filter in {"week", "weekly"}:
|
| 215 |
-
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 216 |
num_days = 7
|
| 217 |
elif time_filter in {"month", "monthly"}:
|
| 218 |
-
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 219 |
num_days = 30
|
| 220 |
else:
|
| 221 |
-
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 222 |
end_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 223 |
num_days = (end_date - start_date).days + 1
|
| 224 |
|
| 225 |
# Query articles with sentiment scores
|
| 226 |
-
|
| 227 |
"publishDate": {"$gte": start, "$lte": end},
|
| 228 |
"sentimentScore": {"$exists": True}
|
| 229 |
-
}
|
| 230 |
|
| 231 |
-
|
| 232 |
daily_scores = defaultdict(lambda: defaultdict(list))
|
| 233 |
-
|
| 234 |
-
# Aggregate sentiment scores by category and date
|
| 235 |
for doc in docs:
|
| 236 |
category = doc.get("category", "Unknown")
|
| 237 |
score = doc.get("sentimentScore")
|
|
@@ -240,14 +235,13 @@ def get_sentiment_analysis_data(time_filter: str) -> Dict[str, Any]:
|
|
| 240 |
daily_scores[category][pub_date].append(score)
|
| 241 |
|
| 242 |
# Generate nested data structure: date -> category -> sentiment
|
| 243 |
-
data = {
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
data[day][category] = avg_score
|
| 251 |
|
| 252 |
return {
|
| 253 |
"title": f"Sentiment Analysis by Category — {time_filter.capitalize()}",
|
|
@@ -255,6 +249,72 @@ def get_sentiment_analysis_data(time_filter: str) -> Dict[str, Any]:
|
|
| 255 |
"data": data
|
| 256 |
}
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
def get_entity_sentiment_data(time_filter: str = "weekly") -> Dict[str, Any]:
|
| 260 |
"""Return *Entity Sentiment Analysis* data for the given period.
|
|
@@ -276,9 +336,9 @@ def get_entity_sentiment_data(time_filter: str = "weekly") -> Dict[str, Any]:
|
|
| 276 |
"""
|
| 277 |
start, end = _time_range(time_filter, entity_collection)
|
| 278 |
|
| 279 |
-
# Convert to date for calculations
|
| 280 |
-
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 281 |
-
end_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 282 |
|
| 283 |
# Calculate num_days based on sentiment logic
|
| 284 |
if time_filter == "today":
|
|
@@ -288,7 +348,8 @@ def get_entity_sentiment_data(time_filter: str = "weekly") -> Dict[str, Any]:
|
|
| 288 |
elif time_filter in {"month", "monthly"}:
|
| 289 |
num_days = 30
|
| 290 |
else:
|
| 291 |
-
num_days = (
|
|
|
|
| 292 |
|
| 293 |
# Query entities with sentiment scores
|
| 294 |
query = {
|
|
@@ -313,50 +374,12 @@ def get_entity_sentiment_data(time_filter: str = "weekly") -> Dict[str, Any]:
|
|
| 313 |
|
| 314 |
# Filter top 10 entities per entityType based on sentiment volatility (range)
|
| 315 |
top_n = 10
|
| 316 |
-
selected_entities =
|
| 317 |
-
|
| 318 |
-
for entity_type, entities in sentiment_by_type.items():
|
| 319 |
-
volatility_scores = {}
|
| 320 |
-
for entity, date_scores in entities.items():
|
| 321 |
-
# Calculate all sentiment values for this entity
|
| 322 |
-
all_values = []
|
| 323 |
-
for i in range(num_days):
|
| 324 |
-
day = (start_date + timedelta(days=i)).isoformat()
|
| 325 |
-
scores = date_scores.get(day, [])
|
| 326 |
-
avg = sum(scores) / len(scores) if scores else None
|
| 327 |
-
if avg is not None:
|
| 328 |
-
all_values.append(avg)
|
| 329 |
-
|
| 330 |
-
# Calculate volatility (range: max - min)
|
| 331 |
-
if len(all_values) > 1:
|
| 332 |
-
volatility = max(all_values) - min(all_values)
|
| 333 |
-
elif len(all_values) == 1:
|
| 334 |
-
volatility = abs(all_values[0]) # Use absolute value for single data point
|
| 335 |
-
else:
|
| 336 |
-
volatility = 0 # No data points
|
| 337 |
-
|
| 338 |
-
volatility_scores[entity] = volatility
|
| 339 |
-
|
| 340 |
-
# Select top N entities with highest volatility
|
| 341 |
-
top_entities = sorted(volatility_scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
|
| 342 |
-
selected_entities[entity_type] = [entity for entity, _ in top_entities]
|
| 343 |
|
| 344 |
# Generate nested data structure: entityType -> date -> entity -> sentiment
|
| 345 |
-
data =
|
| 346 |
-
|
| 347 |
-
day = (start_date + timedelta(days=i)).isoformat()
|
| 348 |
-
for entity_type, entities in sentiment_by_type.items():
|
| 349 |
-
if entity_type not in data:
|
| 350 |
-
data[entity_type] = {}
|
| 351 |
-
if day not in data[entity_type]:
|
| 352 |
-
data[entity_type][day] = {}
|
| 353 |
-
|
| 354 |
-
# Only include selected top entities
|
| 355 |
-
for entity in selected_entities[entity_type]:
|
| 356 |
-
date_scores = entities.get(entity, {})
|
| 357 |
-
scores = date_scores.get(day, [])
|
| 358 |
-
avg = sum(scores) / len(scores) if scores else None
|
| 359 |
-
data[entity_type][day][entity.replace("_", " ")] = avg
|
| 360 |
|
| 361 |
return {
|
| 362 |
"title": f"Entity Sentiment Analysis — {time_filter.capitalize()}",
|
|
|
|
| 3 |
extracted and merged from the previous content/utils.py and entity/utils.py files.
|
| 4 |
"""
|
| 5 |
from datetime import datetime, timedelta
|
| 6 |
+
from typing import Dict, Any, List, DefaultDict
|
| 7 |
from collections import defaultdict
|
| 8 |
|
| 9 |
+
from ...database.mongodb import article_collection, entity_collection
|
| 10 |
|
| 11 |
|
| 12 |
def _get_latest_publish_date_from_collection(collection) -> datetime:
|
|
|
|
| 206 |
Dictionary containing title, dateRange, and sentiment data by category and date.
|
| 207 |
"""
|
| 208 |
start, end = _time_range(time_filter, article_collection)
|
| 209 |
+
start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 210 |
|
| 211 |
+
# Determine num_days based on time_filter (reduced variables)
|
| 212 |
if time_filter == "today":
|
|
|
|
| 213 |
num_days = 1
|
| 214 |
elif time_filter in {"week", "weekly"}:
|
|
|
|
| 215 |
num_days = 7
|
| 216 |
elif time_filter in {"month", "monthly"}:
|
|
|
|
| 217 |
num_days = 30
|
| 218 |
else:
|
|
|
|
| 219 |
end_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 220 |
num_days = (end_date - start_date).days + 1
|
| 221 |
|
| 222 |
# Query articles with sentiment scores
|
| 223 |
+
docs = list(article_collection.find({
|
| 224 |
"publishDate": {"$gte": start, "$lte": end},
|
| 225 |
"sentimentScore": {"$exists": True}
|
| 226 |
+
}))
|
| 227 |
|
| 228 |
+
# Aggregate sentiment scores by category and date (using defaultdict)
|
| 229 |
daily_scores = defaultdict(lambda: defaultdict(list))
|
|
|
|
|
|
|
| 230 |
for doc in docs:
|
| 231 |
category = doc.get("category", "Unknown")
|
| 232 |
score = doc.get("sentimentScore")
|
|
|
|
| 235 |
daily_scores[category][pub_date].append(score)
|
| 236 |
|
| 237 |
# Generate nested data structure: date -> category -> sentiment
|
| 238 |
+
data = {
|
| 239 |
+
(start_date + timedelta(days=i)).isoformat(): {
|
| 240 |
+
category: (sum(scores) / len(scores) if scores else None)
|
| 241 |
+
for category, scores in daily_scores.items()
|
| 242 |
+
}
|
| 243 |
+
for i in range(num_days)
|
| 244 |
+
}
|
|
|
|
| 245 |
|
| 246 |
return {
|
| 247 |
"title": f"Sentiment Analysis by Category — {time_filter.capitalize()}",
|
|
|
|
| 249 |
"data": data
|
| 250 |
}
|
| 251 |
|
| 252 |
+
def _calculate_volatility_scores(
|
| 253 |
+
entities: Dict[str, Any], start_date: datetime.date, num_days: int
|
| 254 |
+
) -> Dict[str, float]:
|
| 255 |
+
"""Calculate volatility scores for entities."""
|
| 256 |
+
volatility_scores = {}
|
| 257 |
+
for entity, date_scores in entities.items():
|
| 258 |
+
# Calculate all sentiment values for this entity
|
| 259 |
+
all_values = []
|
| 260 |
+
for i in range(num_days):
|
| 261 |
+
day = (start_date + timedelta(days=i)).isoformat()
|
| 262 |
+
scores = date_scores.get(day, [])
|
| 263 |
+
avg = sum(scores) / len(scores) if scores else None
|
| 264 |
+
if avg is not None:
|
| 265 |
+
all_values.append(avg)
|
| 266 |
+
|
| 267 |
+
# Calculate volatility (range: max - min)
|
| 268 |
+
if len(all_values) > 1:
|
| 269 |
+
volatility = max(all_values) - min(all_values)
|
| 270 |
+
elif len(all_values) == 1:
|
| 271 |
+
volatility = abs(all_values[0]) # Use absolute value for single data point
|
| 272 |
+
else:
|
| 273 |
+
volatility = 0 # No data points
|
| 274 |
+
|
| 275 |
+
volatility_scores[entity] = volatility
|
| 276 |
+
return volatility_scores
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def _get_selected_entities(
|
| 280 |
+
sentiment_by_type: DefaultDict[str, Any]
|
| 281 |
+
, start_date: datetime.date, num_days: int, top_n: int
|
| 282 |
+
) -> Dict[str, List[str]]:
|
| 283 |
+
"""Select top entities based on volatility scores."""
|
| 284 |
+
selected_entities = {}
|
| 285 |
+
for entity_type, entities in sentiment_by_type.items():
|
| 286 |
+
volatility_scores = _calculate_volatility_scores(entities, start_date, num_days)
|
| 287 |
+
# Select top N entities with highest volatility
|
| 288 |
+
top_entities = sorted(volatility_scores.items()
|
| 289 |
+
, key=lambda x: x[1], reverse=True)[:top_n]
|
| 290 |
+
selected_entities[entity_type] = [entity for entity, _ in top_entities]
|
| 291 |
+
return selected_entities
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def _build_result_data(
|
| 295 |
+
sentiment_by_type: DefaultDict[str, Any],
|
| 296 |
+
selected_entities: Dict[str, List[str]],
|
| 297 |
+
start_date: datetime.date,
|
| 298 |
+
num_days: int,
|
| 299 |
+
) -> Dict[str, Any]:
|
| 300 |
+
"""Build the final result data structure."""
|
| 301 |
+
data = {}
|
| 302 |
+
for i in range(num_days):
|
| 303 |
+
day = (start_date + timedelta(days=i)).isoformat()
|
| 304 |
+
for entity_type, entities in sentiment_by_type.items():
|
| 305 |
+
if entity_type not in data:
|
| 306 |
+
data[entity_type] = {}
|
| 307 |
+
if day not in data[entity_type]:
|
| 308 |
+
data[entity_type][day] = {}
|
| 309 |
+
|
| 310 |
+
# Only include selected top entities
|
| 311 |
+
for entity in selected_entities[entity_type]:
|
| 312 |
+
date_scores = entities.get(entity, {})
|
| 313 |
+
scores = date_scores.get(day, [])
|
| 314 |
+
avg = sum(scores) / len(scores) if scores else None
|
| 315 |
+
data[entity_type][day][entity.replace("_", " ")] = avg
|
| 316 |
+
return data
|
| 317 |
+
|
| 318 |
|
| 319 |
def get_entity_sentiment_data(time_filter: str = "weekly") -> Dict[str, Any]:
|
| 320 |
"""Return *Entity Sentiment Analysis* data for the given period.
|
|
|
|
| 336 |
"""
|
| 337 |
start, end = _time_range(time_filter, entity_collection)
|
| 338 |
|
| 339 |
+
# Convert to date for calculations --> ommitted as too many local variables
|
| 340 |
+
# start_date = datetime.strptime(start, "%Y-%m-%d").date()
|
| 341 |
+
# end_date = datetime.strptime(end, "%Y-%m-%d").date()
|
| 342 |
|
| 343 |
# Calculate num_days based on sentiment logic
|
| 344 |
if time_filter == "today":
|
|
|
|
| 348 |
elif time_filter in {"month", "monthly"}:
|
| 349 |
num_days = 30
|
| 350 |
else:
|
| 351 |
+
num_days = (datetime.strptime(end, "%Y-%m-%d").date()
|
| 352 |
+
- datetime.strptime(start, "%Y-%m-%d").date()).days + 1
|
| 353 |
|
| 354 |
# Query entities with sentiment scores
|
| 355 |
query = {
|
|
|
|
| 374 |
|
| 375 |
# Filter top 10 entities per entityType based on sentiment volatility (range)
|
| 376 |
top_n = 10
|
| 377 |
+
selected_entities = _get_selected_entities(sentiment_by_type
|
| 378 |
+
, datetime.strptime(start, "%Y-%m-%d").date(), num_days, top_n)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
# Generate nested data structure: entityType -> date -> entity -> sentiment
|
| 381 |
+
data = _build_result_data(sentiment_by_type, selected_entities
|
| 382 |
+
, datetime.strptime(start, "%Y-%m-%d").date(), num_days)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
return {
|
| 385 |
"title": f"Entity Sentiment Analysis — {time_filter.capitalize()}",
|
app/database/__init__.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""Module for Mongodb database"""
|
| 2 |
-
from
|
| 3 |
|
| 4 |
MongoClient = MongodbClient
|
| 5 |
FinFastMongoClient = FinFastMongodbClient
|
|
|
|
| 1 |
"""Module for Mongodb database"""
|
| 2 |
+
from .mongodb import MongodbClient, FinFastMongodbClient
|
| 3 |
|
| 4 |
MongoClient = MongodbClient
|
| 5 |
FinFastMongoClient = FinFastMongodbClient
|
app/database/mongodb.py
CHANGED
|
@@ -1,9 +1,18 @@
|
|
| 1 |
"""MongoDB database interaction module."""
|
| 2 |
import os
|
| 3 |
from pymongo import MongoClient
|
| 4 |
-
|
| 5 |
MongodbClient = MongoClient(os.getenv('MONGODB_URI'))
|
| 6 |
FinFastMongodbClient = MongoClient(os.getenv("MONGODB_FINFAST_URI"))
|
| 7 |
article_collection = FinFastMongodbClient["FinFAST_China"]["Article"]
|
| 8 |
category_collection = FinFastMongodbClient["FinFAST_China"]["Category"]
|
| 9 |
entity_collection = FinFastMongodbClient["FinFAST_China"]["Entity"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""MongoDB database interaction module."""
|
| 2 |
import os
|
| 3 |
from pymongo import MongoClient
|
| 4 |
+
"""
|
| 5 |
MongodbClient = MongoClient(os.getenv('MONGODB_URI'))
|
| 6 |
FinFastMongodbClient = MongoClient(os.getenv("MONGODB_FINFAST_URI"))
|
| 7 |
article_collection = FinFastMongodbClient["FinFAST_China"]["Article"]
|
| 8 |
category_collection = FinFastMongodbClient["FinFAST_China"]["Category"]
|
| 9 |
entity_collection = FinFastMongodbClient["FinFAST_China"]["Entity"]
|
| 10 |
+
"""
|
| 11 |
+
MONGODB_URI = "mongodb+srv://finfast:[email protected]/?retryWrites=true&w=majority&appName=MarcoEconomics"
|
| 12 |
+
MONGODB_FINFAST_URI = "mongodb+srv://user:[email protected]/?retryWrites=true&w=majority&appName=Cluster"
|
| 13 |
+
MongodbClient = MongoClient(MONGODB_URI)
|
| 14 |
+
FinFastMongodbClient = MongoClient(os.getenv(MONGODB_FINFAST_URI))
|
| 15 |
+
article_collection = FinFastMongodbClient["FinFAST_China"]["Article"]
|
| 16 |
+
category_collection = FinFastMongodbClient["FinFAST_China"]["Category"]
|
| 17 |
+
entity_collection = FinFastMongodbClient["FinFAST_China"]["Entity"]
|
| 18 |
+
|
app/routes/__init__.py
CHANGED
|
@@ -2,4 +2,4 @@
|
|
| 2 |
from flask import Blueprint
|
| 3 |
|
| 4 |
category_bp = Blueprint("category", __name__)
|
| 5 |
-
summary_bp = Blueprint(
|
|
|
|
| 2 |
from flask import Blueprint
|
| 3 |
|
| 4 |
category_bp = Blueprint("category", __name__)
|
| 5 |
+
summary_bp = Blueprint("summary", __name__)
|
app/routes/category_router.py
CHANGED
|
@@ -7,8 +7,8 @@ from the MongoDB database.
|
|
| 7 |
Routes:
|
| 8 |
- GET /api/category: Fetch all categories.
|
| 9 |
"""
|
| 10 |
-
from controllers.category import get_categories
|
| 11 |
from flask import jsonify
|
|
|
|
| 12 |
from . import category_bp
|
| 13 |
|
| 14 |
@category_bp.route("/api/category", methods=["GET"])
|
|
|
|
| 7 |
Routes:
|
| 8 |
- GET /api/category: Fetch all categories.
|
| 9 |
"""
|
|
|
|
| 10 |
from flask import jsonify
|
| 11 |
+
from ..controllers.category import get_categories
|
| 12 |
from . import category_bp
|
| 13 |
|
| 14 |
@category_bp.route("/api/category", methods=["GET"])
|
app/routes/summary.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
|
| 3 |
import importlib
|
| 4 |
from flask import jsonify
|
| 5 |
-
from controllers.summary import get_summary_data
|
| 6 |
from . import summary_bp
|
| 7 |
|
| 8 |
@summary_bp.route('', methods=['GET'])
|
|
|
|
| 2 |
|
| 3 |
import importlib
|
| 4 |
from flask import jsonify
|
| 5 |
+
from ..controllers.summary import get_summary_data
|
| 6 |
from . import summary_bp
|
| 7 |
|
| 8 |
@summary_bp.route('', methods=['GET'])
|
jobs.json
CHANGED
|
@@ -12,5 +12,13 @@
|
|
| 12 |
"trigger": "cron",
|
| 13 |
"hour": 23,
|
| 14 |
"minute": 45
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
|
|
|
| 16 |
]
|
|
|
|
| 12 |
"trigger": "cron",
|
| 13 |
"hour": 23,
|
| 14 |
"minute": 45
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"id": "daily_category_update",
|
| 18 |
+
"func": "collectors.category_update:collect",
|
| 19 |
+
"trigger": "cron",
|
| 20 |
+
"hour": 16,
|
| 21 |
+
"minute": 0
|
| 22 |
}
|
| 23 |
+
|
| 24 |
]
|