File size: 46,306 Bytes
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
b0e3d06
 
 
 
5c3c401
b0e3d06
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f4cb5
5c3c401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
# pylint: disable=too-many-lines
"""
LDA controller for topic modeling and visualization.
"""
import re
import logging
from datetime import datetime, timedelta
from collections import Counter, defaultdict
import numpy as np
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sklearn.metrics import silhouette_score
from gensim import corpora
from gensim.models import LdaModel
from gensim.models.coherencemodel import CoherenceModel
import requests
from langchain.schema import SystemMessage, HumanMessage

from models.llm import gpt # pylint: disable=import-error
from .keyword import FIN_KEYWORDS
from .keyword_analysis import get_time_range, get_previous_time_range

# Configure logger
logger = logging.getLogger(__name__)


class FinancialKeywordManager:
    """
    Manages both static predefined financial keywords and dynamically fetched trending keywords.

    This class handles the fetching and combining of financial keywords from different sources.
    It provides mechanisms to fetch trending financial terms from external APIs and combine them
    with a predefined list of static financial keywords.

    Attributes:
    static_keywords (set): Predefined set of financial keywords
    trending_keywords (set): Dynamically fetched trending financial terms
    """

    def __init__(self, static_keywords):
        """Initialize the FinancialKeywordManager with a set of static keywords."""
        self.static_keywords = set(static_keywords)
        self.trending_keywords = set()

    def fetch_trending_keywords(self, days_back=30):
        """
        Fetch trending keywords from external APIs
        Args:
        days_back (int): Number of days to look back for trending keywords

        Returns:
        None: Updates the trending_keywords set internally

        """
        logger.info("Fetching trending keywords from last %d days...", days_back)
        trending = set()
        trending.update(self.fetch_from_eodhd(days_back))
        self.trending_keywords = trending

    def _is_valid_keyword(self, keyword: str) -> bool:
        """
        Applies a series of rules to determine if a keyword is a valid, non-noise financial term.
        
        This function is designed to filter out stock tickers, short codes, and common junk.

        Args:
            keyword (str): The keyword to validate.

        Returns:
            bool: True if the keyword is valid, False otherwise.
        """
        # Rule 1: Basic length check
        if not 3 <= len(keyword) <= 30:
            return False

        # Rule 2: Exclude keywords that are purely numeric (e.g., "2024")
        if keyword.isdigit():
            return False

        # Rule 3: Exclude stock tickers (e.g., 'aapl', 'tsla', 'googl')
        # Tickers are typically 1-5 characters, all lowercase or all uppercase.
        if len(keyword) <= 5 and (keyword.islower() or keyword.isupper()) and keyword.isalpha():
            # We check if it's NOT in our static keywords to avoid filtering out valid short words.
            if keyword not in self.static_keywords:
                return False

        # Rule 4: Exclude keywords containing digits unless it's a known pattern (e.g., s&p 500)
        # This removes terms like 'q1-2024', '10k'.
        if any(char.isdigit() for char in keyword):
            # Allow specific patterns that are known to be valid
            if not re.search(r'(s&p 500|p/e|\d{2,4}q\d|\d{1,2}-k)', keyword):
                return False

        # Rule 5: Check against an expanded list of common junk words and stop words
        expanded_junk_terms = {
            'announces', 'reports', 'says', 'inc', 'corp', 'ltd', 'company', 'llc', 'plc',
            'what', 'why', 'how', 'when', 'where', 'who', 'you', 'your', 'our', 'the',
            'and', 'for', 'with', 'that', 'this', 'news', 'article', 'today', 'new', 'all',
            'from', 'shares', 'stock', 'investor', 'market', 'business', 'daily', 'update',
            'alert', 'breaking', 'story', 'post', 'view', 'click', 'here', 'details'
        }
        if keyword in expanded_junk_terms:
            return False

        # If all checks pass, the keyword is considered valid
        return True

    def fetch_from_eodhd(self, days_back=30): # pylint: disable=too-many-locals, too-many-branches
        """
        Fetch trending financial keywords from EODHD API.

        This method queries the EODHD news API to retrieve financial news articles,
        extracts keywords from various metadata fields, and filters them based on
        frequency and quality criteria.

        Args:
            days_back (int): Number of days to look back for news articles

        Returns:
            set: Set of trending financial keywords
        """
        API_TOKEN = ' 685e0d635924b8.73169691' # pylint: disable=invalid-name
        base_url = 'https://eodhd.com/api/news'
        end_date = datetime.now()
        start_date = end_date - timedelta(days=days_back)
        params = {
            'api_token': API_TOKEN,
            'from': start_date.strftime('%Y-%m-%d'),
            'to': end_date.strftime('%Y-%m-%d'),
            'limit': 1000,
            'tag': ('finance,economy,market,business,banking,stocks,trading,investment,forex,'
                    'cryptocurrency,bonds,commodities,inflation,recession,gdp,fed,treasury,'
                    'interest,rates,earnings,ipo,merger,acquisition,economic-data,'
                    'central-bank,monetary-policy,fiscal-policy')
        }

        try: # pylint: disable=too-many-nested-blocks
            response = requests.get(base_url, params=params, timeout=60)
            if response.status_code == 200:
                articles = response.json()
                keyword_counts = {}

                for article in articles:
                    metadata_fields = ['tags', 'keywords', 'topics', 'entities', 'concepts']

                    # Extract keywords from various metadata fields
                    for field in metadata_fields:
                        field_data = article.get(field, [])
                        if not field_data:
                            continue

                        keywords_to_process = []
                        if isinstance(field_data, list):
                            keywords_to_process = [kw for kw in field_data if isinstance(kw, str)]
                        elif isinstance(field_data, str):
                            keywords_to_process = [
                                kw.strip() for kw in field_data.split(',') if kw.strip()]

                        for kw in keywords_to_process:
                            clean_kw = kw.lower().strip()
                            if (3 <= len(clean_kw) <= 25 and
                                not (kw.isupper() and len(kw) <= 4) and
                                not clean_kw.startswith('http') and
                                (' ' not in clean_kw or len(clean_kw.split()) <= 3)):
                                keyword_counts[clean_kw] = keyword_counts.get(clean_kw, 0) + 1

                    title = article.get('title', '')
                    if title:
                        quoted_terms = re.findall(r'"([^"]{3,20})"', title)
                        for term in quoted_terms:
                            clean_term = term.lower().strip()
                            if 3 <= len(clean_term) <= 20:
                                keyword_counts[clean_term] = keyword_counts.get(clean_term, 0) + 1

                        company_pattern = (
                            r'\b([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)\s+'
                            r'(?:Bank|Corp|Financial|Capital|Fund|Securities|Group|Holdings)'
                        )
                        companies = re.findall(company_pattern, title)
                        for company in companies:
                            clean_company = company.strip().lower()
                            if len(clean_company) > 3:
                                keyword_counts[clean_company] = keyword_counts.get(
                                    clean_company, 0) + 1

                min_frequency = 2
                filtered_keywords = {}
                for kw, count in keyword_counts.items():
                    if count >= min_frequency and self._is_valid_keyword(kw):
                        filtered_keywords[kw] = count

                trending_keywords = set(filtered_keywords.keys())
                if len(trending_keywords) > 0:
                    # Get the top keywords from the filtered list
                    top_trending = sorted(
                        filtered_keywords.items(),
                        key=lambda x: x[1],
                        reverse=True)[:15]
                    sample_keywords = [f"{kw}({count})" for kw, count in top_trending]
                    logger.info("EODHD top trending examples: %s", sample_keywords)

                return trending_keywords

        except Exception as e: # pylint: disable=broad-exception-caught
            logger.error("EODHD API error: %s", e)
        return set()

class HeatedKeywordsAnalyzer: # pylint: disable=too-many-instance-attributes
    """
    This class handles the extraction of financial terms from articles, calculates heating scores,
    performs LDA topic clustering, and analyzes sentiment of financial terms.

    Attributes:
        finance_keywords (dict): Comprehensive dictionary of financial keywords by category
        all_finance_keywords (set): Flattened set of all financial keywords
        keyword_manager (FinancialKeywordManager): Manager for static and trending keywords
        lemmatizer (WordNetLemmatizer): NLTK lemmatizer for word normalization
        stop_words (set): Stop words for text processing
        sentiment_tokenizer (AutoTokenizer): FinBERT tokenizer for sentiment analysis
        sentiment_model (AutoModelForSequenceClassification): FinBERT model for sentiment analysis
        vectorizer (CountVectorizer): Text vectorizer for LDA
        lda_model (LatentDirichletAllocation): LDA model for topic clustering
        feature_names (ndarray): Feature names from vectorizer
    """
    def __init__(self, article_collection, keyword_collection):
        logger.info("Initializing HeatedKeywordsAnalyzer...")

        self.article_collection = article_collection
        self.keyword_collection = keyword_collection

        self.finance_keywords = FIN_KEYWORDS

        self.all_finance_keywords = set()
        for category_keywords in self.finance_keywords.values():
            self.all_finance_keywords.update(category_keywords)

        self.keyword_manager = FinancialKeywordManager(self.all_finance_keywords)

        self.lemmatizer = WordNetLemmatizer()
        self.stop_words = set(stopwords.words('english'))
        self.stop_words.update(['said', 'says', 'according', 'report', 'news', 'article'])

        self.sentiment_tokenizer = None
        self.sentiment_model = None
        self._sentiment_initialized = False
        self.lda_model = None
        self.id2word = None
        self.topics_info = {}
        self.feature_names = None
        self.lda_model = None
        self.feature_names = None
        self.llm_model = gpt

        self.geographic_context = None  # Will store the detected geographic context

    def _initialize_sentiment_model(self):
        """Lazy initialization of sentiment model."""
        if not self._sentiment_initialized:
            logger.info("Initializing sentiment analysis model...")
            try:
                self.sentiment_tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone")
                self.sentiment_model = AutoModelForSequenceClassification.from_pretrained(
                    "yiyanghkust/finbert-tone")
                self._sentiment_initialized = True
                logger.info("Sentiment analysis model initialized.")
            except Exception as e: # pylint: disable=broad-exception-caught
                logger.error("Failed to initialize sentiment models: %s", e)
                self._sentiment_initialized = True  # Prevent retry

    def fetch_articles(self, start_date, end_date, sample_size=None):
        """
        Fetch articles from MongoDB within a specified date range.

        Args:
            start_date (datetime): Start date for article retrieval
            end_date (datetime): End date for article retrieval

        Returns:
            list: List of document dictionaries with 'text', 'title', 'content', and 'date' fields
        """
        logger.info("Fetching articles from %s to %s", start_date.date(), end_date.date())
        if sample_size:
            pipeline = [
                {"$match": {
                    "publishDate": {
                        "$gte": start_date.strftime("%Y-%m-%d"),
                        "$lte": end_date.strftime("%Y-%m-%d")
                    }
                }},
                {"$sample": {"size": sample_size}}
            ]
            cursor = self.article_collection.aggregate(pipeline)
        else:
            cursor = self.article_collection.find({
                "publishDate": {
                    "$gte": start_date.strftime("%Y-%m-%d"),
                    "$lte": end_date.strftime("%Y-%m-%d")
                }
            })
        articles_text = [
            (f"Title: {doc.get('title', '')}\n"
             f"Content: {doc.get('content', '')}\n"
             f"sentimentScore: {doc.get('sentimentScore', '')}") for doc in cursor]
        documents = []
        for article_text in articles_text:
            lines = article_text.split('\n')
            title = ""
            content = ""
            sentiment_score = 0
            for line in lines:
                if line.startswith('Title: '):
                    title = line[7:]
                elif line.startswith('Content: '):
                    content = line[9:]
                elif line.startswith('sentimentScore: '):
                    sentiment_score = float(line[16:])
            if title or content:
                full_text = f"{title} {content}".strip()
                if len(full_text) > 50:
                    documents.append({
                        'text': full_text,
                        'title': title,
                        'content': content,
                        'sentimentScore': sentiment_score,
                        'date': start_date.strftime("%Y-%m-%d")
                    })
        return documents

    def extract_financial_terms(self, text): # pylint: disable=too-many-locals, too-many-branches, too-many-statements
        """
        Extract financial terms from text with advanced matching techniques.

        Args:
            text (str): Text to extract financial terms from

        Returns:
            list: List of tuples (term, category) of extracted financial terms
        """
        text_lower = text.lower()
        found_terms = []
        used_spans = []

        # Build a map of term variations to canonical terms and categories
        term_variations_map = {}

        for category, terms in self.finance_keywords.items():
            for canonical_term in terms:
                variations = set()

                # Handle multi-word terms
                if ' ' in canonical_term:
                    term_words = canonical_term.split()
                    variations.add(canonical_term)

                    # Add lemmatized form
                    lemmatized_words = [self.lemmatizer.lemmatize(word) for word in term_words]
                    lemmatized_term = ' '.join(lemmatized_words)
                    variations.add(lemmatized_term)

                    # Add plural form if not already plural
                    if not canonical_term.endswith('s'):
                        plural_words = term_words[:-1] + [term_words[-1] + 's']
                        plural_term = ' '.join(plural_words)
                        variations.add(plural_term)

                    # Add singular form if plural
                    if canonical_term.endswith('s') and len(term_words[-1]) > 1:
                        singular_words = term_words[:-1] + [term_words[-1][:-1]]
                        singular_term = ' '.join(singular_words)
                        variations.add(singular_term)
                # Handle single-word terms
                else:
                    variations.add(canonical_term)
                    lemmatized_term = self.lemmatizer.lemmatize(canonical_term)
                    variations.add(lemmatized_term)

                    if not canonical_term.endswith('s'):
                        plural_term = canonical_term + 's'
                        variations.add(plural_term)

                    if canonical_term.endswith('s') and len(canonical_term) > 1:
                        singular_term = canonical_term[:-1]
                        variations.add(singular_term)

                for variation in variations:
                    if variation and len(variation.strip()) > 0:
                        term_variations_map[variation] = (canonical_term, category)

        # First process multi-word terms (to avoid partial matches)
        multi_word_variations = {k: v for k, v in term_variations_map.items() if ' ' in k}
        sorted_multi_word = sorted(multi_word_variations.keys(), key=len, reverse=True)

        for variation in sorted_multi_word:
            canonical_term, category = multi_word_variations[variation]
            start = 0
            while True:
                idx = text_lower.find(variation, start)
                if idx == -1:
                    break

                # Check for word boundaries
                if ((idx == 0 or not text_lower[idx-1].isalpha()) and
                    (idx + len(variation) == len(text_lower) or
                    not text_lower[idx + len(variation)].isalpha())):

                    # Check if this span overlaps with previously found terms
                    span_covered = any(
                        s <= idx < e or s < idx + len(variation) <= e for s, e in used_spans)
                    if not span_covered:
                        found_terms.append((canonical_term, category))
                        used_spans.append((idx, idx + len(variation)))

                start = idx + len(variation)

        # Then process single-word terms
        single_word_variations = {k: v for k, v in term_variations_map.items() if ' ' not in k}
        tokens = word_tokenize(text_lower)
        offset = 0

        for token in tokens:
            token_start = text_lower.find(token, offset)
            token_end = token_start + len(token)

            # Check if this token overlaps with previously found terms
            if not any(s <= token_start < e for s, e in used_spans):
                if token in single_word_variations:
                    canonical_term, category = single_word_variations[token]
                    found_terms.append((canonical_term, category))

            offset = token_end

        return found_terms

    def analyze_sentiment(self, text):
        """
        Analyze sentiment of text using FinBERT model.

        Args:
            text (str): Text to analyze sentiment for

        Returns:
            tuple: (sentiment_label, confidence_score)

        Note:
            Sentiment label is one of 'positive', 'neutral', or 'negative'
            Confidence score is a float between 0.0 and 1.0
        """
        try:
            if not self._sentiment_initialized:
                self._initialize_sentiment_model()

            inputs = self.sentiment_tokenizer(
                text[:512],
                return_tensors="pt",
                truncation=True,
                max_length=512
            )
            with torch.no_grad():
                outputs = self.sentiment_model(**inputs)
                predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)

            labels = ['negative', 'neutral', 'positive']
            scores = predictions[0].numpy()
            predicted_label = labels[np.argmax(scores)]
            confidence = float(np.max(scores))

            return predicted_label, confidence
        except Exception as e: # pylint: disable=broad-exception-caught
            logger.error("Sentiment analysis error: %s", e)
            return 'neutral', 0.5

    def calculate_heating_scores(self, current_docs, previous_docs): # pylint: disable=too-many-locals
        """
        Calculate heating scores and perform LDA clustering.

        Args:
            current_docs (list): List of document dictionaries for current period
            previous_docs (list): List of document dictionaries for previous period

        Returns:
            tuple: (term_frequencies, heating_scores, lda_results)
                - term_frequencies: Counter of term frequencies
                - heating_scores: Dict mapping terms to heating scores
                - lda_results: Dict with LDA clustering results
        """
        # Extract terms from current documents
        current_terms = []
        for doc in current_docs:
            doc_terms = [term for term, _ in self.extract_financial_terms(doc['text'])]
            current_terms.extend(doc_terms)

        current_freq = Counter(current_terms)
        heating_scores = {}

        # Calculate heating scores if previous documents exist
        if previous_docs and len(previous_docs) > 0:
            previous_terms = []
            for doc in previous_docs:
                doc_terms = [term for term, _ in self.extract_financial_terms(doc['text'])]
                previous_terms.extend(doc_terms)

            previous_freq = Counter(previous_terms)

            total_current = sum(current_freq.values())
            total_previous = sum(previous_freq.values())

            if total_current > 0 and total_previous > 0:
                for term in current_freq:
                    current_pct = (current_freq[term] / total_current) * 100
                    previous_pct = (previous_freq.get(term, 0) / total_previous) * 100

                    if previous_pct > 0:
                        heating_score = ((current_pct - previous_pct) / previous_pct) * 100
                    else:
                        heating_score = 100.0 if current_pct > 0 else 0.0

                    heating_scores[term] = heating_score
            else:
                for term in current_freq:
                    heating_scores[term] = 0.0
        else:
            for term in current_freq:
                heating_scores[term] = 0.0

        lda_results = self.perform_lda_clustering(current_docs)

        return current_freq, heating_scores, lda_results

    def filter_topics_by_financial_keywords(self, topics_info):
        """
        Filters and enhances topic keywords.
        """
        all_financial_keywords = self.all_finance_keywords

        for _, topic_info in topics_info.items():
            llm_name = topic_info.get('llm_name', 'Unnamed Topic')

            words = topic_info['words']
            weights = topic_info['weights']

            financial_terms = []
            financial_weights = []
            for word, weight in zip(words, weights):
                word_clean = word.replace('_', ' ').lower()
                is_financial = False
                if word_clean in all_financial_keywords:
                    is_financial = True
                else:
                    for financial_term in all_financial_keywords:
                        if ' ' in financial_term and word_clean in financial_term.split():
                            is_financial = True
                            break
                        if word_clean in financial_term or financial_term in word_clean:
                            is_financial = True
                            break
                if is_financial:
                    financial_terms.append(word.replace('_', ' '))
                    financial_weights.append(weight)

            if financial_terms:
                sorted_pairs = sorted(
                    zip(financial_terms, financial_weights),
                    key=lambda x: x[1],
                    reverse=True
                )
                topic_info['words'] = [term for term, _ in sorted_pairs[:10]]
                topic_info['weights'] = [weight for _, weight in sorted_pairs[:10]]
                topic_info['word_weight_pairs'] = sorted_pairs[:10]
                topic_info['financial_terms_count'] = len(financial_terms)
            else:
                topic_info['words'] = [word.replace('_', ' ') for word in words[:5]]
                topic_info['weights'] = weights[:5]
                topic_info['word_weight_pairs'] = list(zip(
                    [word.replace('_', ' ') for word in words[:5]],
                    weights[:5]
                    ))
                topic_info['financial_terms_count'] = 0

            topic_info['llm_name'] = llm_name

        return topics_info

    def preprocess_documents(self, documents):
        """
        Preprocess documents for LDA analysis while preserving financial terms.

        This method performs text preprocessing specifically designed for financial
        text analysis, including preserving multi-word financial terms by replacing
        spaces with underscores.

        Args:
            documents (list): List of document dictionaries

        Returns:
            list: List of preprocessed text strings
        """
        processed_texts = []

        for doc in documents:
            text = doc['text'].lower()

            protected_text = text
            # Get all financial terms
            all_financial_terms = []
            for category_terms in self.finance_keywords.values():
                all_financial_terms.extend(category_terms)

            # Sort terms by length (descending) to prioritize longer matches
            sorted_terms = sorted(all_financial_terms, key=len, reverse=True)

            # Replace spaces in multi-word terms with underscores to preserve them
            for term in sorted_terms:
                if ' ' in term:
                    term_pattern = term.replace(' ', r'\s+')
                    underscore_term = term.replace(' ', '_')
                    protected_text = re.sub(
                        r'\b' + term_pattern + r'\b',
                        underscore_term,
                        protected_text
                    )

            # Remove non-alphabetic characters except underscores
            text = re.sub(r'[^a-zA-Z\s_]', '', protected_text)

            text = ' '.join(text.split())
            processed_texts.append(text)

        return processed_texts

    def _gensim_to_dense_matrix(self, gensim_corpus, num_topics):
        """
        Helper to convert gensim's sparse output to a dense numpy array for silhouette scoring.
        """
        num_docs = len(gensim_corpus)
        dense_matrix = np.zeros((num_docs, num_topics))
        for i, doc_topics in enumerate(gensim_corpus):
            for topic_id, prob in doc_topics:
                dense_matrix[i, topic_id] = prob
        return dense_matrix

    def find_optimal_topics_gensim(self, corpus, id2word, tokenized_texts, documents_count): # pylint: disable=too-many-locals
        """
        Dynamically determines the optimal number of topics for a gensim model.
        """
        if documents_count < 100:
            topic_range = range(6, min(12, documents_count // 8))
        elif documents_count< 300:
            topic_range = range(12, min(20, documents_count // 10))
        else:
            topic_range = range(20, min(35, documents_count // 25))

        if len(topic_range) < 2:
            return max(2, min(3, documents_count))

        logger.info("Testing %d topic configurations with gensim...", len(topic_range))
        perplexities, coherence_scores, silhouette_scores = [], [], []

        for n_topics in topic_range:
            try:
                lda_model = LdaModel(corpus=corpus, id2word=id2word, num_topics=n_topics,
                                   random_state=42, passes=10, alpha='auto', eta='auto')

                # Metric 1: Perplexity
                perplexities.append(lda_model.log_perplexity(corpus))

                # Metric 2: Coherence
                coherence_model = CoherenceModel(model=lda_model, texts=tokenized_texts,
                                               dictionary=id2word, coherence='c_v')
                coherence_scores.append(coherence_model.get_coherence())

                # Metric 3: Silhouette
                doc_topic_matrix_sparse = lda_model.get_document_topics(
                    corpus, minimum_probability=0)
                doc_topic_matrix_dense = self._gensim_to_dense_matrix(
                    doc_topic_matrix_sparse, n_topics)
                if len(set(np.argmax(doc_topic_matrix_dense, axis=1))) > 1:
                    silhouette_scores.append(silhouette_score(
                        doc_topic_matrix_dense,
                        np.argmax(doc_topic_matrix_dense, axis=1)))
                else:
                    silhouette_scores.append(0.0)
            except Exception as e: # pylint: disable=broad-exception-caught
                logger.warning("Error evaluating %d topics: %s", n_topics, e)
                perplexities.append(float('inf'))
                coherence_scores.append(0.0)
                silhouette_scores.append(0.0)

        if not all([perplexities, coherence_scores, silhouette_scores]):
            return max(2, min(5, documents_count // 10))

        norm_perp = [(max(perplexities) - p) / (max(perplexities) - min(perplexities))
                     if max(perplexities) != min(perplexities) else 0.5 for p in perplexities]
        norm_coh = [(c - min(coherence_scores)) / (max(coherence_scores) - min(coherence_scores))
                    if max(coherence_scores) != min(coherence_scores)
                    else 0.5 for c in coherence_scores]
        norm_sil = [(s - min(silhouette_scores)) / (max(silhouette_scores) - min(silhouette_scores))
                    if max(silhouette_scores) != min(silhouette_scores)
                    else 0.5 for s in silhouette_scores]
        combined_scores = [0.4 * nc + 0.3 * np + 0.3 * ns
            for np, nc, ns in zip(norm_perp, norm_coh, norm_sil)]

        optimal_topics = list(topic_range)[np.argmax(combined_scores)]
        logger.info("Optimal number of topics found: %d", optimal_topics)
        return optimal_topics

    def perform_lda_clustering(self, documents, n_topics=None):
        """
        Perform LDA clustering using gensim, with a sophisticated method for finding
        the optimal number of topics.
        """
        try:
            if len(documents) < 5:
                logger.warning("Too few documents for meaningful LDA clustering.")
                return None

            self.geographic_context = self.detect_geographic_context(documents)
            logger.info("Detected geographic context: %s", self.geographic_context)

            processed_texts_str = self.preprocess_documents(documents)
            tokenized_texts = [text.split() for text in processed_texts_str]
            self.id2word = corpora.Dictionary(tokenized_texts)
            self.id2word.filter_extremes(no_below=max(2, len(documents) // 20), no_above=0.85)
            corpus = [self.id2word.doc2bow(text) for text in tokenized_texts]

            if not corpus or not any(corpus):
                logger.warning("Corpus is empty after preprocessing.")
                return None

            if n_topics is None:
                n_topics = self.find_optimal_topics_gensim(
                    corpus, self.id2word, tokenized_texts, len(documents))

            logger.info("Fitting FINAL gensim LDA model with %d topics...", n_topics)
            self.lda_model = LdaModel(corpus=corpus, id2word=self.id2word, num_topics=n_topics,
                                    random_state=42, passes=15, alpha='auto', eta='auto')

            topic_assignments = []
            for doc_bow in corpus:
                topics = self.lda_model.get_document_topics(doc_bow, minimum_probability=0.3)
                best_topic = max(topics, key=lambda item: item[1]) if topics else None
                topic_assignments.append(best_topic[0] if best_topic else -1) # pylint: disable=unsubscriptable-object

            # Extract topic words with geographic context
            self.topics_info = self.extract_topic_words(n_topics)

            return {
                'topic_assignments': topic_assignments, 
                'topics_info': self.topics_info, 
                'n_topics': n_topics,
                'total_documents': len(documents), 
                'corpus': corpus, 
                'id2word': self.id2word,
                'geographic_context': self.geographic_context  # Include context in results
            }
        except Exception as e: # pylint: disable=broad-exception-caught
            logger.error("Gensim LDA clustering error: %s", e)
            return None

    def detect_geographic_context(self, documents):
        """
        Detect the primary geographic context from a collection of documents.
        
        Args:
            documents (list): List of document dictionaries
            
        Returns:
            str: Primary geographic region (e.g., 'China', 'Global', 'US', etc.)
        """
        geographic_indicators = {
            'china': ['china', 'chinese', 'beijing', 'shanghai', 'yuan', 'renminbi', 'pboc', 'ccp'],
            'us': ['united states', 'america', 'american', 'federal reserve',
            'fed', 'dollar', 'usd', 'wall street'],
            'europe': ['europe', 'european', 'euro', 'ecb', 'brexit', 'eu'],
            'japan': ['japan', 'japanese', 'yen', 'tokyo', 'boj'],
            'global': ['global', 'worldwide', 'international', 'world']
        }

        region_scores = {region: 0 for region in geographic_indicators.keys()} # pylint: disable=consider-iterating-dictionary
        total_docs = len(documents)

        for doc in documents:
            text_lower = doc['text'].lower()
            for region, indicators in geographic_indicators.items():
                for indicator in indicators:
                    if indicator in text_lower:
                        region_scores[region] += 1

        # Normalize scores by document count
        for region in region_scores:
            region_scores[region] = region_scores[region] / total_docs if total_docs > 0 else 0

        # Determine primary region
        primary_region = max(region_scores, key=region_scores.get)

        # If no clear geographic context, default to 'Global'
        if region_scores[primary_region] < 0.1:
            primary_region = 'global'

        return primary_region.title()

    def name_topic_with_llm(self, topic_keywords, geographic_context=None):
        """
        Generates a concise, human-readable name for a topic using an LLM with geographic context.
        
        Args:
            topic_keywords (list): List of keywords for the topic
            geographic_context (str): Geographic context of the articles
            (e.g., 'China', 'US', 'Global')
        """
        # Fallback name in case of LLM failure
        fallback_name = f"Topic: {', '.join(topic_keywords[:3])}"

        if not self.llm_model:
            logger.warning("LLM model not available. Using fallback topic name.")
            return fallback_name

        # Prepare the keywords for the prompt
        keywords_str = ", ".join(topic_keywords)

        # Construct geographic context string
        geo_context_str = ""
        if geographic_context and geographic_context.lower() != 'global':
            geo_context_str = f" in the {geographic_context} market"

        # Construct the prompt with geographic context
        system_message = SystemMessage(
            content=(
                "You are an expert financial analyst. Your task is to analyze a list of keywords "
                "from a financial news topic and create a concise, descriptive title for it. "
                "Consider the geographic context when creating the topic name."
            )
        )
        human_message = HumanMessage(
            content=(
                f"Keywords: {keywords_str}\n"
                f"Geographic Context: {geographic_context or 'Global'}\n\n"
                f"Based on these keywords from financial news{geo_context_str}, "
                "what is the core financial theme? "
                "Please provide a topic name that is 3-5 words long."
                " The name should be clear and professional. "
                "If the geographic context is significant to understanding the topic,"
                " incorporate it naturally. "
                "Do NOT use quotes or any other formatting in your response. Just the topic name."
            )
        )

        try:
            response = self.llm_model.invoke([system_message, human_message])
            topic_name = response.content.strip().replace('"', '').replace("'", "")
            return topic_name.title()
        except Exception as e: # pylint: disable=broad-exception-caught
            logger.warning("LLM naming failed: %s. Using fallback name.", e)
            return fallback_name

    def extract_topic_words(self, n_topics, n_top_words=15):
        """
        Extracts top words for each topic and adds an LLM-generated descriptive
        name with geographic context.
        """
        topics_info = {}

        if not self.lda_model:
            logger.error("LDA model is not available for extracting topic words.")
            return topics_info

        for topic_idx in range(n_topics):
            # Correctly get top words and their weights using the Gensim API
            topic_terms = self.lda_model.get_topic_terms(topic_idx, topn=n_top_words)

            # The id2word dictionary maps word IDs to the actual words
            top_words = [self.id2word[word_id] for word_id, _ in topic_terms]
            top_weights = [weight for _, weight in topic_terms]

            # Clean up underscores from multi-word terms before processing
            cleaned_words = [word.replace('_', ' ') for word in top_words]

            llm_generated_name = self.name_topic_with_llm(
                cleaned_words[:10],
                self.geographic_context
            )

            topics_info[f'Topic_{topic_idx}'] = {
                'llm_name': llm_generated_name,
                'words': cleaned_words,
                'weights': top_weights,
                'word_weight_pairs': list(zip(cleaned_words, top_weights))
            }

        filtered_topics = self.filter_topics_by_financial_keywords(topics_info)
        return filtered_topics

    def calculate_topic_sentiments_from_documents(self, lda_results, documents):
        """
        Calculate topic sentiments using document-level sentiment scores.
        
        Args:
            lda_results (dict): LDA clustering results
            documents (list): List of document dictionaries with sentimentScore field
            
        Returns:
            dict: {topic_id: sentiment_score} where sentiment_score is -1.0 to 1.0
        """
        topic_sentiments = {}
        topic_assignments = lda_results.get('topic_assignments', [])

        # Group documents by their assigned topic
        topic_documents = {}
        for i, topic_id in enumerate(topic_assignments):
            if topic_id != -1:  # Skip unassigned documents
                topic_key = f'Topic_{topic_id}'
                if topic_key not in topic_documents:
                    topic_documents[topic_key] = []
                topic_documents[topic_key].append(documents[i])

        # Calculate average sentiment for each topic
        for topic_id, topic_docs in topic_documents.items():
            if topic_docs:
                # Extract sentiment scores from documents
                sentiment_scores = []
                for doc in topic_docs:
                    sentiment_score = doc.get('sentimentScore', 0)
                    sentiment_scores.append(sentiment_score)

                # Calculate average sentiment
                if sentiment_scores:
                    avg_sentiment = sum(sentiment_scores) / len(sentiment_scores)
                    topic_sentiments[topic_id] = avg_sentiment
                else:
                    topic_sentiments[topic_id] = 0.0
            else:
                topic_sentiments[topic_id] = 0.0
        return topic_sentiments

    def get_lda_results(self, lda_results):
        """
        Get LDA topic names, document counts and sentiment scores.
        """
        topics_info = lda_results.get('topics_info', {})
        topic_sentiments = lda_results.get('topic_sentiments', {})
        topic_assignments = lda_results.get('topic_assignments', [])

        if not topics_info:
            logger.warning("No topic information available")
            return None

        # Calculate document counts for each topic
        doc_counts = Counter(t for t in topic_assignments if t != -1)

        topic_data = []
        # Prepare data in a dictionary
        for topic_id, topic_info in topics_info.items():
            topic_num = int(topic_id.split('_')[-1])
            topic_name = topic_info.get('llm_name', f'Topic {topic_num + 1}')
            doc_count = doc_counts.get(topic_num, 0)
            sentiment_score = topic_sentiments.get(topic_id, 0.0)
            if doc_count > 0:
                topic_data.append({
                    'topic_name': topic_name,
                    'doc_count': doc_count,
                    'sentiment_score': sentiment_score
                })
        return topic_data

    def analyze_heated_keywords(self, filter_type, analyzer=None): # pylint: disable=too-many-locals
        """
        Analyzes heated keywords for a specific time period.

        Fetches articles for the current and previous time periods, calculates heating scores,
        performs LDA topic clustering, and analyzes sentiment for financial keywords.

        Args:
            filter_type (str): Time filter type ('today', 'week', or 'month')
            analyzer (HeatedKeywordsAnalyzer, optional): Analyzer instance

        Returns:
            dict: Results containing term frequencies, heating scores, sentiment scores,
                  LDA results, categorized terms, term weights, and current documents
        """
        if analyzer is None:
            analyzer = self

        current_start, current_end = get_time_range(filter_type)
        prev_start, prev_end = get_previous_time_range(filter_type, current_start)

        current_docs = analyzer.fetch_articles(current_start, current_end)

        previous_docs = analyzer.fetch_articles(prev_start, prev_end)

        if len(current_docs) < 1:
            logger.warning("Insufficient documents (%d) for %s analysis",
                len(current_docs), filter_type)
            return None

        term_frequencies, heating_scores, lda_results = analyzer.calculate_heating_scores(
            current_docs, previous_docs)

        if not term_frequencies:
            logger.warning("No financial terms found for %s", filter_type)
            return None

        sentiment_scores = self.calculate_keyword_sentiments(
            current_docs, term_frequencies, analyzer)

        total_mentions = sum(term_frequencies.values())
        term_weights = {
            term: (freq / total_mentions) * 100 for term, freq in term_frequencies.items()}

        results = {
            'term_frequencies': term_frequencies,
            'heating_scores': heating_scores,
            'sentiment_scores': sentiment_scores,
            'lda_results': lda_results,
            'categorized_terms': analyzer.categorize_terms_thematically(term_frequencies),
            'term_weights': term_weights,
            'current_docs': current_docs
        }

        return results

    def calculate_keyword_sentiments(self, documents, term_frequencies, analyzer):
        """
        Calculate sentiment scores for top keywords.
        """
        sentiment_scores = {}
        top_terms = term_frequencies.most_common(30)

        for term, _ in top_terms:
            relevant_docs = [doc for doc in documents if term.lower() in doc['text'].lower()]

            if relevant_docs:
                relevant_sentences = []
                for doc in relevant_docs[:5]:
                    sentences = doc['text'].split('.')
                    for sentence in sentences:
                        if term.lower() in sentence.lower():
                            relevant_sentences.append(sentence.strip())

                if relevant_sentences:
                    combined_text = ' '.join(relevant_sentences[:3])
                    sentiment, confidence = analyzer.analyze_sentiment(combined_text)
                    sentiment_scores[term] = (sentiment, confidence)
                else:
                    sentiment_scores[term] = ('neutral', 0.5)
            else:
                sentiment_scores[term] = ('neutral', 0.5)

        return sentiment_scores

    def categorize_terms_thematically(self, term_frequencies):
        """
        Categorize terms by financial themes.

        Groups financial terms into predefined categories based on the finance_keywords dictionary.

        Args:
            term_frequencies (Counter): Counter object with term frequencies

        Returns:
            dict: Dictionary with terms grouped by financial categories
        """
        categorized = defaultdict(list)
        for term, frequency in term_frequencies.items():
            found = False
            for category, terms in self.finance_keywords.items():
                if term in terms:
                    categorized[category].append({'term': term, 'frequency': frequency})
                    found = True
                    break
            if not found:
                categorized['general'].append({'term': term, 'frequency': frequency})
        return dict(categorized)