File size: 17,913 Bytes
5c3c401 72f4cb5 5c3c401 72f4cb5 5c3c401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
"""
Keyword analysis controller for analysis-related functions.
"""
from datetime import datetime, timedelta
import logging
# Configure logger
logger = logging.getLogger(__name__)
def get_time_range(filter_type: str) -> tuple[datetime, datetime]:
"""
Calculate time range for analysis periods.
Args:
filter_type: One of 'today', 'week', or 'month'
Returns:
tuple: (start_date, end_date) as datetime objects
"""
end_date = datetime.now()
if filter_type == "today":
start_date = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
elif filter_type == "week":
start_date = end_date - timedelta(days=6)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
elif filter_type == "month":
start_date = end_date - timedelta(days=29)
start_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
else:
# Default to today
start_date = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
return start_date, end_date
def get_previous_time_range(
filter_type: str,
current_start: datetime
) -> tuple[datetime, datetime]:
"""
Calculate previous time range for comparison.
Args:
filter_type: One of 'today', 'week', or 'month'
current_start: Start date of current period
Returns:
tuple: (previous_start, previous_end) as datetime objects
"""
if filter_type == "today":
# Previous day
previous_end = current_start - timedelta(seconds=1)
previous_start = previous_end.replace(hour=0, minute=0, second=0, microsecond=0)
elif filter_type == "week":
# Previous week (7 days before)
previous_end = current_start - timedelta(seconds=1)
previous_start = previous_end - timedelta(days=6)
previous_start = previous_start.replace(hour=0, minute=0, second=0, microsecond=0)
elif filter_type == "month":
# Previous month (30 days before)
previous_end = current_start - timedelta(seconds=1)
previous_start = previous_end - timedelta(days=29)
previous_start = previous_start.replace(hour=0, minute=0, second=0, microsecond=0)
else:
# Default to previous day
previous_end = current_start - timedelta(seconds=1)
previous_start = previous_end.replace(hour=0, minute=0, second=0, microsecond=0)
return previous_start, previous_end
def calculate_heating_scores_from_database( # pylint: disable=too-many-locals, too-many-branches, too-many-statements
filter_type: str,
keywords_collection
) -> tuple[dict, dict, dict, dict]: # Add dict for categories
"""
Calculate heating scores by comparing stored keywords from database.
Args:
filter_type: Analysis period ('today', 'week', 'month')
keywords_collection: MongoDB collection containing keywords
Returns:
tuple: (heating_scores, current_keywords, previous_keywords, keyword_categories)
"""
heating_scores = {}
keyword_categories = {} # Add this to store category mappings
# Get current period date range
current_start, current_end = get_time_range(filter_type)
prev_start, prev_end = get_previous_time_range(filter_type, current_start)
logger.info("Fetching stored keywords for heating calculation")
logger.info("Current: %s to %s",
current_start.strftime('%Y-%m-%d'), current_end.strftime('%Y-%m-%d'))
logger.info("Previous: %s to %s",
prev_start.strftime('%Y-%m-%d'), prev_end.strftime('%Y-%m-%d'))
# Get current period keywords from database
current_keywords = {}
current_docs_found = 0
current_cursor = keywords_collection.find({
"_id": {
"$gte": current_start.strftime("%Y-%m-%d"),
"$lte": current_end.strftime("%Y-%m-%d")
}
})
for doc in current_cursor:
current_docs_found += 1
if 'keywords' in doc:
for kw in doc['keywords']:
keyword = kw.get('keyword', '')
frequency = kw.get('frequency', 0)
category = kw.get('category', 'other_categories') # Retrieve category
if keyword in current_keywords:
current_keywords[keyword] += frequency
else:
current_keywords[keyword] = frequency
# Store category mapping (use latest category if keyword appears multiple times)
keyword_categories[keyword] = category
# For daily analysis, if no current keywords found, try to find most recent data
if filter_type == "today" and current_docs_found == 0: # pylint: disable=too-many-nested-blocks
logger.warning("No keywords found for today. Looking for most recent available data...")
# Find the most recent date with keywords
most_recent_doc = keywords_collection.find_one(
sort=[("_id", -1)],
projection={"_id": 1}
)
if most_recent_doc:
most_recent_date_str = most_recent_doc['_id']
most_recent_date = datetime.strptime(most_recent_date_str, "%Y-%m-%d")
logger.info("Using most recent available date: %s", most_recent_date_str)
# Recalculate date ranges using the most recent date
current_start = most_recent_date.replace(hour=0, minute=0, second=0, microsecond=0)
current_end = most_recent_date.replace(
hour=23, minute=59, second=59, microsecond=999999)
prev_start, prev_end = get_previous_time_range(filter_type, current_start)
logger.info("Adjusted current: %s to %s",
current_start.strftime('%Y-%m-%d'), current_end.strftime('%Y-%m-%d'))
logger.info("Adjusted previous: %s to %s",
prev_start.strftime('%Y-%m-%d'), prev_end.strftime('%Y-%m-%d'))
# Re-fetch current period keywords with adjusted date range
current_keywords = {}
current_docs_found = 0
current_cursor = keywords_collection.find({
"_id": {
"$gte": current_start.strftime("%Y-%m-%d"),
"$lte": current_end.strftime("%Y-%m-%d")
}
})
for doc in current_cursor:
current_docs_found += 1
if 'keywords' in doc:
for kw in doc['keywords']:
keyword = kw.get('keyword', '')
frequency = kw.get('frequency', 0)
category = kw.get('category', 'other_categories')
if keyword in current_keywords:
current_keywords[keyword] += frequency
else:
current_keywords[keyword] = frequency
keyword_categories[keyword] = category
else:
logger.error("No keywords found in database at all")
return {}, {}, {}, {}
# Get previous period keywords from database
previous_keywords = {}
previous_docs_found = 0
previous_cursor = keywords_collection.find({
"_id": {
"$gte": prev_start.strftime("%Y-%m-%d"),
"$lte": prev_end.strftime("%Y-%m-%d")
}
})
for doc in previous_cursor:
previous_docs_found += 1
if 'keywords' in doc:
for kw in doc['keywords']:
keyword = kw.get('keyword', '')
frequency = kw.get('frequency', 0)
category = kw.get('category', 'other_categories') # Retrieve category
if keyword in previous_keywords:
previous_keywords[keyword] += frequency
else:
previous_keywords[keyword] = frequency
# Store category mapping for previous keywords too
if keyword not in keyword_categories:
keyword_categories[keyword] = category
# Calculate totals
total_current = sum(current_keywords.values()) or 1
total_previous = sum(previous_keywords.values()) or 1
logger.info("Current period: %d database records, %d terms, total freq: %d",
current_docs_found, len(current_keywords), total_current)
logger.info("Previous period: %d database records, %d terms, total freq: %d",
previous_docs_found, len(previous_keywords), total_previous)
if not previous_keywords:
# No previous data - assign 0.0 for existing terms
logger.info("No previous data - assigning neutral heating scores")
for term in current_keywords:
heating_scores[term] = 0.0
else:
logger.info("Calculating heating scores")
# Calculate heating scores
for term, current_freq in current_keywords.items():
previous_freq = previous_keywords.get(term, 0)
if previous_freq > 0:
# Term existed before - calculate percentage change in frequency
freq_change = ((current_freq - previous_freq) / previous_freq) * 100
heating_scores[term] = round(freq_change, 1)
else:
# New term - assign high positive heating
heating_scores[term] = 200.0
# Handle terms that disappeared (were in previous but not current)
for term in previous_keywords:
if term not in current_keywords:
heating_scores[term] = -200.0
return heating_scores, current_keywords, previous_keywords, keyword_categories
def calculate_heating_scores_for_period(
current_terms_data: list,
previous_terms_data: list
) -> dict:
"""
Calculate heating scores between two periods.
Args:
current_terms_data: List of current period keyword data
previous_terms_data: List of previous period keyword data
Returns:
dict: Heating scores for each keyword
"""
heating_scores = {}
# Create frequency maps
current_freq = {term['keyword']: term['frequency'] for term in current_terms_data}
previous_freq = {term['keyword']: term['frequency'] for term in previous_terms_data}
# Calculate heating scores
for term, current_freq_val in current_freq.items():
previous_freq_val = previous_freq.get(term, 0)
if previous_freq_val > 0:
# Term existed before - calculate percentage change
freq_change = ((current_freq_val - previous_freq_val) / previous_freq_val) * 100
heating_scores[term] = round(freq_change, 1)
else:
# New term - assign high positive heating
heating_scores[term] = 200.0
# Handle terms that disappeared
for term in previous_freq:
if term not in current_freq:
heating_scores[term] = -200.0
return heating_scores
def create_thematic_analysis(terms_with_data: list) -> list:
"""
Create thematic groupings from keyword data.
Args:
terms_with_data: List of keyword data with categories
Returns:
list: List of theme objects
"""
themes = {}
# Group terms by category
for term in terms_with_data:
category = term.get('category', 'other_categories')
keyword = term.get('keyword', '')
frequency = term.get('frequency', 0)
_ = term.get('popularity', 0.0)
if category not in themes:
themes[category] = {
'theme_name': category,
'description': f"Keywords related to {category}",
'terms': [],
'total_frequency': 0,
'heating_score': 0.0
}
themes[category]['terms'].append(keyword)
themes[category]['total_frequency'] += frequency
# Calculate average heating score for each theme
for theme in themes.values():
if theme['terms']:
avg_heating = sum(term.get('popularity', 0.0) for term in terms_with_data
if term.get('keyword') in theme['terms']) / len(theme['terms'])
theme['heating_score'] = round(avg_heating, 1)
return list(themes.values())
def analyze_keywords_from_database(
filter_type: str,
keywords_collection
) -> dict:
"""
Analyze keywords using existing database data (no re-extraction).
Args:
filter_type: Analysis period ('today', 'week', 'month')
keywords_collection: MongoDB collection containing keywords
Returns:
dict: Analysis results with keywords and themes
"""
logger.info("Starting database analysis for %s", filter_type)
# Get heating scores from database (now includes categories)
heating_scores, current_keywords, previous_keywords, keyword_categories = (
calculate_heating_scores_from_database(filter_type, keywords_collection)
)
# Convert to standardized format
terms_data = []
for keyword, frequency in current_keywords.items():
term_data = {
'keyword': keyword,
'category': keyword_categories.get(keyword, 'other_categories'), # Use actual category
'frequency': frequency,
'popularity': heating_scores.get(keyword, 0.0),
'new': keyword not in previous_keywords,
'variations': [], # Will be populated from database if needed
'importanceScore': 0.8 if keyword not in previous_keywords else 0.5,
'context': f"Found {frequency} times in {filter_type} period"
}
terms_data.append(term_data)
# Sort by frequency and popularity
terms_data.sort(key=lambda x: (x['frequency'], abs(x['popularity'])), reverse=True)
# Create thematic analysis
themes_data = create_thematic_analysis(terms_data)
results = {
'terms': terms_data,
'themes': themes_data
}
logger.info("Analysis completed: %d terms, %d themes", len(terms_data), len(themes_data))
return results
def save_summary_to_database(
filter_type: str,
results_data: dict,
summary_collection
) -> None:
"""
Save analysis results to Summary collection.
Args:
filter_type: Analysis period ('today', 'week', 'month')
results_data: Analysis results to save
summary_collection: MongoDB collection to save results
"""
try:
# Process keywords for storage
processed_keywords = []
for term in results_data.get('terms', [])[:50]: # Limit to top 50
processed_term = term.copy()
# Ensure label is present
processed_term['label'] = processed_term.get('keyword', '').title()
# Rename heating_score to popularity if present
if 'heating_score' in processed_term:
processed_term['popularity'] = processed_term.pop('heating_score')
# Rename sentiment fields to camelCase
if 'sentiment_score' in processed_term:
processed_term['sentimentScore'] = processed_term.pop('sentiment_score')
if 'sentiment_label' in processed_term:
processed_term['sentimentLabel'] = processed_term.pop('sentiment_label')
processed_keywords.append(processed_term)
# Process categories/themes for storage
processed_categories = []
for theme in results_data.get('themes', []):
processed_categories.append({
"category": theme.get('theme_name', ''),
"description": theme.get('description', ''),
"keywords": theme.get('terms', []),
"frequency": theme.get('total_frequency', 0),
"popularity": theme.get('heating_score', 0.0)
})
# Create document for storage
document = {
"_id": filter_type, # Fixed IDs: "today", "week", "month"
"keywords": processed_keywords,
"categories": processed_categories
}
# Remove old results for this specific analysis and insert
if processed_keywords and processed_categories:
if len(processed_keywords) > 0 and len(processed_categories) > 0:
summary_collection.delete_one({"_id": filter_type})
result = summary_collection.insert_one(document)
logger.info("Saved %s summary to database (ID: %s)",
filter_type, result.inserted_id)
except Exception as e:
logger.error("Error saving summary to database: %s", str(e))
raise
def cleanup_old_keywords(keywords_collection, latest_date: datetime) -> int:
"""
Remove keywords older than 60 days from the latest date.
Args:
keywords_collection: MongoDB collection containing keywords
latest_date: Latest article date to use as reference
Returns:
int: Number of deleted records
"""
logger.info("Cleaning up records to maintain a 60-day window from the latest article")
# The anchor for the 60-day window is the latest article date, not exactly today's date
cutoff_date = latest_date - timedelta(days=60)
result = keywords_collection.delete_many({
"_id": {"$lt": cutoff_date.strftime("%Y-%m-%d")}
})
logger.info("Cutoff Date: %s, based on latest article on %s",
cutoff_date.strftime('%Y-%m-%d'), latest_date.strftime('%Y-%m-%d'))
logger.info("Deleted %d old records", result.deleted_count)
# Show current data range
oldest_doc = keywords_collection.find_one(
sort=[("_id", 1)],
projection={"_id": 1}
)
newest_doc = keywords_collection.find_one(
sort=[("_id", -1)],
projection={"_id": 1}
)
if oldest_doc and newest_doc:
logger.info("Current data range: %s to %s", oldest_doc['_id'], newest_doc['_id'])
return result.deleted_count
|