Owen
commited on
Commit
Β·
a2d9b4e
1
Parent(s):
e7780e3
update evaluation plot
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import torch.nn as nn
|
|
4 |
import torchaudio
|
5 |
import numpy as np # type: ignore
|
6 |
import gradio as gr # type: ignore
|
|
|
7 |
from transformers import pipeline
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from torchaudio.models import Conformer
|
@@ -220,37 +221,50 @@ with gr.Blocks() as tab_architecture:
|
|
220 |
gr.Image("conformer.png", show_label=False, show_download_button=False)
|
221 |
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
# --- Tab 4: Tabel Hasil Evaluasi ---
|
224 |
with gr.Blocks() as tab_results:
|
225 |
-
gr.
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
</tbody>
|
252 |
-
</table>
|
253 |
-
""")
|
254 |
|
255 |
# --- Tab 5: Fine-tuning Info ---
|
256 |
with gr.Blocks() as tab_authors:
|
|
|
4 |
import torchaudio
|
5 |
import numpy as np # type: ignore
|
6 |
import gradio as gr # type: ignore
|
7 |
+
import pandas as pd
|
8 |
from transformers import pipeline
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from torchaudio.models import Conformer
|
|
|
221 |
gr.Image("conformer.png", show_label=False, show_download_button=False)
|
222 |
|
223 |
|
224 |
+
import gradio as gr
|
225 |
+
import pandas as pd
|
226 |
+
|
227 |
+
data_wer = {
|
228 |
+
"Model": ["Whisper", "Conformer"],
|
229 |
+
"WER": [11, 50],
|
230 |
+
}
|
231 |
+
|
232 |
+
data_cer = {
|
233 |
+
"Model": ["Whisper", "Conformer"],
|
234 |
+
'CER': [0, 20]
|
235 |
+
}
|
236 |
+
|
237 |
+
df_WER = pd.DataFrame(data_wer)
|
238 |
+
df_CER = pd.DataFrame(data_cer)
|
239 |
+
|
240 |
# --- Tab 4: Tabel Hasil Evaluasi ---
|
241 |
with gr.Blocks() as tab_results:
|
242 |
+
gr.Markdown("## π Best Error Rate (WER / CER)")
|
243 |
+
with gr.Row():
|
244 |
+
gr.BarPlot(
|
245 |
+
df_WER,
|
246 |
+
x="Model",
|
247 |
+
y="WER",
|
248 |
+
title="Best WER by Model",
|
249 |
+
tooltip=["Model", "WER"],
|
250 |
+
y_lim=(0, 100),
|
251 |
+
container=False,
|
252 |
+
height=400,
|
253 |
+
width=300
|
254 |
+
)
|
255 |
+
|
256 |
+
gr.BarPlot(
|
257 |
+
df_CER,
|
258 |
+
x="Model",
|
259 |
+
y="CER",
|
260 |
+
title="Best CER by Model",
|
261 |
+
tooltip=["Model", "CER"],
|
262 |
+
y_lim=(0, 100),
|
263 |
+
container=False,
|
264 |
+
height=400,
|
265 |
+
width=300
|
266 |
+
)
|
267 |
+
|
|
|
|
|
|
|
268 |
|
269 |
# --- Tab 5: Fine-tuning Info ---
|
270 |
with gr.Blocks() as tab_authors:
|