|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import torch
|
|
import json
|
|
|
|
|
|
model_id = "google/gemma-3n-E4B-it"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
def call_llm(prompt):
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
|
outputs = model.generate(**inputs, max_new_tokens=1024)
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
insight_prompt = """
|
|
You are a senior data analyst. You are given a dataset summary and column statistics after cleaning.
|
|
|
|
Please perform the following:
|
|
1. Describe the structure of the data in natural language.
|
|
2. Mention any interesting patterns or distributions (e.g. most common values, ranges, anomalies).
|
|
3. Derive any basic insights you can (e.g. relationships between columns, high-cardinality features, outliers).
|
|
4. Point out anything surprising or worth further investigation.
|
|
|
|
Be specific. Don't explain generic EDA steps β interpret the data as if you're preparing a short report.
|
|
|
|
Column Summary:
|
|
{column_data}
|
|
"""
|
|
|
|
def generate_insights(column_data):
|
|
prompt = insight_prompt.format(column_data=json.dumps(column_data, indent=2))
|
|
return call_llm(prompt)
|
|
|
|
|