Osama-Ahmed-27 commited on
Commit
c85f75b
Β·
verified Β·
1 Parent(s): 25c256f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -1
README.md CHANGED
@@ -1,3 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Sentiment Analysis
3
  emoji: 🏒
@@ -8,5 +124,4 @@ pinned: false
8
  license: mit
9
  short_description: 'This project is a Sentiment, Emotion, and Tone Analysis API '
10
  ---
11
-
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ 🎯 Overview
2
+
3
+ This project is a Sentiment, Emotion, and Tone Analysis API powered by NLP + Speech Recognition.
4
+ It provides a simple way to analyze any text or voice input and outputs three key psychological indicators:
5
+
6
+ Sentiment β†’ Overall polarity of the text (positive/negative/neutral)
7
+
8
+ Emotion β†’ Emotional undertone detected (positive/negative/neutral)
9
+
10
+ Tone β†’ Financial/business tone detection using FinBERT (positive/negative/neutral)
11
+
12
+ The system returns a clean JSON output with numeric scores in the range -1 to +1, where:
13
+
14
+ Positive β†’ +value
15
+
16
+ Negative β†’ -value
17
+
18
+ Neutral β†’ 0
19
+
20
+ Example output:
21
+
22
+ [
23
+ {
24
+ "sentiment": -0.3,
25
+ "emotion": -0.62,
26
+ "tone": -1.0
27
+ }
28
+ ]
29
+
30
+ πŸ”‘ Features
31
+
32
+ Text Analysis
33
+
34
+ Input plain text and get instant sentiment, emotion, and tone scores.
35
+
36
+ Voice Analysis
37
+
38
+ Upload a WAV/AIFF audio file.
39
+
40
+ The system transcribes it (using speech_recognition free Google Web Speech API).
41
+
42
+ Runs the transcription through the NLP pipeline.
43
+
44
+ Unified JSON Output
45
+
46
+ Strict format for easy integration into any app, dashboard, or pipeline.
47
+
48
+ Models Used
49
+
50
+ VADER (NLTK) β†’ Sentiment scoring
51
+
52
+ tabularisai/multilingual-sentiment-analysis (Hugging Face) β†’ Emotion classification
53
+
54
+ FinBERT (yiyanghkust/finbert-tone) β†’ Business/financial tone detection
55
+
56
+ πŸ› οΈ Tech Stack
57
+
58
+ Backend: Python + FastAPI
59
+
60
+ Libraries: nltk, transformers, torch, SpeechRecognition
61
+
62
+ Deployment: Hugging Face Spaces (Docker SDK, free CPU)
63
+
64
+ πŸ“‘ Endpoints
65
+ 1. POST /analyze-text
66
+
67
+ Request:
68
+
69
+ { "text": "I love the service but delivery was late." }
70
+
71
+
72
+ Response:
73
+
74
+ [
75
+ { "sentiment": 0.7, "emotion": -0.4, "tone": -0.9 }
76
+ ]
77
+
78
+ 2. POST /analyze-voice
79
+
80
+ Request:
81
+
82
+ Form-data upload: [email protected]
83
+
84
+ Response:
85
+
86
+ [
87
+ { "sentiment": -0.2, "emotion": -0.5, "tone": 0.0 }
88
+ ]
89
+
90
+ πŸš€ Use Cases
91
+
92
+ Customer support analysis (detect angry vs happy customers).
93
+
94
+ Financial news / earnings call tone monitoring.
95
+
96
+ Social media listening (track public mood & emotions).
97
+
98
+ Personal productivity apps (journal tone/sentiment analysis).
99
+
100
+ Call center or chatbot integrations.
101
+
102
+ ⚑ Advantages
103
+
104
+ βœ… Free & lightweight (no paid API required).
105
+
106
+ βœ… Works on both text & voice.
107
+
108
+ βœ… Multilingual support for emotions.
109
+
110
+ βœ… JSON output with strict schema (easy to integrate).
111
+
112
+ βœ… Deployable on Hugging Face Spaces for free.
113
+
114
+
115
+
116
+
117
  ---
118
  title: Sentiment Analysis
119
  emoji: 🏒
 
124
  license: mit
125
  short_description: 'This project is a Sentiment, Emotion, and Tone Analysis API '
126
  ---
 
127
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference