Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import torch
|
| 4 |
+
import nltk
|
| 5 |
+
import speech_recognition as sr
|
| 6 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
+
from transformers import pipeline, BertForSequenceClassification, BertTokenizer
|
| 9 |
+
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
| 10 |
+
|
| 11 |
+
# ---------------- INIT ----------------
|
| 12 |
+
try:
|
| 13 |
+
nltk.data.find("sentiment/vader_lexicon")
|
| 14 |
+
except LookupError:
|
| 15 |
+
nltk.download("vader_lexicon")
|
| 16 |
+
vader = SentimentIntensityAnalyzer()
|
| 17 |
+
|
| 18 |
+
# Emotion model
|
| 19 |
+
emotion_model = pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
| 20 |
+
|
| 21 |
+
# FinBERT Tone
|
| 22 |
+
finbert = BertForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", num_labels=3)
|
| 23 |
+
finbert_tokenizer = BertTokenizer.from_pretrained("yiyanghkust/finbert-tone")
|
| 24 |
+
tone_labels = ["Neutral", "Positive", "Negative"]
|
| 25 |
+
|
| 26 |
+
# FastAPI
|
| 27 |
+
app = FastAPI(title="Sentiment • Emotion • Tone API", version="2.0.0")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# ---------------- HELPERS ----------------
|
| 31 |
+
def _label3(label_str: str) -> str:
|
| 32 |
+
l = label_str.lower()
|
| 33 |
+
if "pos" in l:
|
| 34 |
+
return "Positive"
|
| 35 |
+
if "neg" in l:
|
| 36 |
+
return "Negative"
|
| 37 |
+
return "Neutral"
|
| 38 |
+
|
| 39 |
+
def _signed_score(label: str, score01: float) -> float:
|
| 40 |
+
if label == "Positive":
|
| 41 |
+
return +abs(float(score01))
|
| 42 |
+
if label == "Negative":
|
| 43 |
+
return -abs(float(score01))
|
| 44 |
+
return 0.0
|
| 45 |
+
|
| 46 |
+
def score_sentiment(text: str) -> float:
|
| 47 |
+
c = vader.polarity_scores(text)["compound"]
|
| 48 |
+
if c >= 0.05:
|
| 49 |
+
return _signed_score("Positive", abs(c))
|
| 50 |
+
elif c <= -0.05:
|
| 51 |
+
return _signed_score("Negative", abs(c))
|
| 52 |
+
else:
|
| 53 |
+
return 0.0
|
| 54 |
+
|
| 55 |
+
def score_emotion(text: str) -> float:
|
| 56 |
+
out = emotion_model(text)[0]
|
| 57 |
+
lab = _label3(out["label"])
|
| 58 |
+
return _signed_score(lab, float(out["score"]))
|
| 59 |
+
|
| 60 |
+
def score_tone(text: str) -> float:
|
| 61 |
+
inputs = finbert_tokenizer(text, return_tensors="pt", truncation=True)
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
logits = finbert(**inputs).logits
|
| 64 |
+
probs = torch.softmax(logits, dim=1).squeeze()
|
| 65 |
+
idx = torch.argmax(probs).item()
|
| 66 |
+
lab = tone_labels[idx]
|
| 67 |
+
scr = float(probs[idx].item())
|
| 68 |
+
return _signed_score(lab, scr)
|
| 69 |
+
|
| 70 |
+
def analyze_text_core(text: str):
|
| 71 |
+
return [{
|
| 72 |
+
"sentiment": round(score_sentiment(text), 4),
|
| 73 |
+
"emotion": round(score_emotion(text), 4),
|
| 74 |
+
"tone": round(score_tone(text), 4),
|
| 75 |
+
}]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# ---------------- SCHEMAS ----------------
|
| 79 |
+
class TextIn(BaseModel):
|
| 80 |
+
text: str
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# ---------------- ROUTES ----------------
|
| 84 |
+
@app.get("/")
|
| 85 |
+
def root():
|
| 86 |
+
return {"ok": True, "endpoints": ["/analyze-text", "/analyze-voice"]}
|
| 87 |
+
|
| 88 |
+
@app.post("/analyze-text")
|
| 89 |
+
def analyze_text(payload: TextIn):
|
| 90 |
+
text = (payload.text or "").strip()
|
| 91 |
+
if not text:
|
| 92 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty.")
|
| 93 |
+
return analyze_text_core(text)
|
| 94 |
+
|
| 95 |
+
@app.post("/analyze-voice")
|
| 96 |
+
async def analyze_voice(file: UploadFile = File(...)):
|
| 97 |
+
# Save uploaded audio temporarily
|
| 98 |
+
fname = (file.filename or "audio").lower()
|
| 99 |
+
if not any(fname.endswith(ext) for ext in (".wav", ".aiff", ".aif")):
|
| 100 |
+
raise HTTPException(status_code=400, detail="Please upload WAV/AIFF file (MP3 not supported by speech_recognition without ffmpeg).")
|
| 101 |
+
|
| 102 |
+
data = await file.read()
|
| 103 |
+
tmp_path = f"/tmp/{fname}"
|
| 104 |
+
with open(tmp_path, "wb") as f:
|
| 105 |
+
f.write(data)
|
| 106 |
+
|
| 107 |
+
# SpeechRecognition with Google Web Speech API (free, no key)
|
| 108 |
+
recognizer = sr.Recognizer()
|
| 109 |
+
with sr.AudioFile(tmp_path) as source:
|
| 110 |
+
audio = recognizer.record(source)
|
| 111 |
+
|
| 112 |
+
try:
|
| 113 |
+
transcript = recognizer.recognize_google(audio, language="en-US")
|
| 114 |
+
except Exception as e:
|
| 115 |
+
raise HTTPException(status_code=500, detail=f"Transcription failed: {e}")
|
| 116 |
+
|
| 117 |
+
return analyze_text_core(transcript)
|