Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,36 +8,32 @@ from pydantic import BaseModel
|
|
| 8 |
from transformers import pipeline, BertForSequenceClassification, BertTokenizer
|
| 9 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
os.makedirs(NLTK_DATA_PATH, exist_ok=True)
|
| 16 |
-
|
| 17 |
-
# Ensure VADER is available
|
| 18 |
try:
|
| 19 |
nltk.data.find("sentiment/vader_lexicon")
|
| 20 |
except LookupError:
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Add path manually so nltk can find it
|
| 24 |
-
nltk.data.path.append(NLTK_DATA_PATH)
|
| 25 |
-
|
| 26 |
-
nltk.data.path.append("./nltk_data")
|
| 27 |
-
|
| 28 |
|
| 29 |
vader = SentimentIntensityAnalyzer()
|
| 30 |
|
| 31 |
-
#
|
| 32 |
emotion_model = pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
| 33 |
-
|
| 34 |
-
# FinBERT Tone
|
| 35 |
finbert = BertForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", num_labels=3)
|
| 36 |
finbert_tokenizer = BertTokenizer.from_pretrained("yiyanghkust/finbert-tone")
|
| 37 |
tone_labels = ["Neutral", "Positive", "Negative"]
|
| 38 |
|
| 39 |
-
|
| 40 |
-
app = FastAPI(title="Sentiment • Emotion • Tone API", version="2.0.0")
|
| 41 |
|
| 42 |
|
| 43 |
# ---------------- HELPERS ----------------
|
|
|
|
| 8 |
from transformers import pipeline, BertForSequenceClassification, BertTokenizer
|
| 9 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
| 10 |
|
| 11 |
+
# ---------- Force writable cache locations (must match Dockerfile) ----------
|
| 12 |
+
os.environ.setdefault("NLTK_DATA", "/data/nltk_data")
|
| 13 |
+
os.environ.setdefault("HF_HOME", "/data/huggingface")
|
| 14 |
+
os.environ.setdefault("TRANSFORMERS_CACHE", "/data/huggingface/transformers")
|
| 15 |
+
os.environ.setdefault("HF_DATASETS_CACHE", "/data/huggingface/datasets")
|
| 16 |
+
os.environ.setdefault("TMPDIR", "/data/tmp")
|
| 17 |
|
| 18 |
+
# Also ensure nltk uses this path immediately
|
| 19 |
+
nltk.data.path = [os.environ["NLTK_DATA"]] + nltk.data.path
|
| 20 |
|
| 21 |
+
# ---------- NLTK VADER ----------
|
|
|
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
nltk.data.find("sentiment/vader_lexicon")
|
| 24 |
except LookupError:
|
| 25 |
+
# download into /data/nltk_data (writable)
|
| 26 |
+
nltk.download("vader_lexicon", download_dir=os.environ["NLTK_DATA"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
vader = SentimentIntensityAnalyzer()
|
| 29 |
|
| 30 |
+
# ---------- Models ----------
|
| 31 |
emotion_model = pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
|
|
|
|
|
|
| 32 |
finbert = BertForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", num_labels=3)
|
| 33 |
finbert_tokenizer = BertTokenizer.from_pretrained("yiyanghkust/finbert-tone")
|
| 34 |
tone_labels = ["Neutral", "Positive", "Negative"]
|
| 35 |
|
| 36 |
+
app = FastAPI(title="Sentiment • Emotion • Tone API", version="2.0.1")
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
# ---------------- HELPERS ----------------
|