Mario Faundez
chore: better description texts in app gradio
7b02514
raw
history blame
1.41 kB
import gradio as gr
from official.nlp.optimization import AdamWeightDecay, WarmUp
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
import numpy as np
np.set_printoptions(suppress=True)
labels = [
"hate speech",
"offensive language",
"neither"
]
with tf.keras.utils.custom_object_scope({'AdamWeightDecay': AdamWeightDecay(), 'WarmUp': WarmUp}):
classifier_model = tf.keras.models.load_model('classifier_model.h5',
custom_objects={'KerasLayer': hub.KerasLayer})
def run_model(text):
prediction = classifier_model.predict([text])[0]
confidences = {labels[i]: float(prediction[i]) for i in range(len(labels))}
return confidences
examples = [
["This is wonderful!"],
]
short_description = "This application classifies text into three categories: hate speech, offensive language, and neither, using a deep learning model trained on the Hate Speech and Offensive Language Dataset. Enter a sentence and the model will predict its category."
hate_speech = gr.Interface(
fn=run_model,
inputs=gr.Textbox(lines=5,
placeholder="Enter a sentence here...",
label="Input Text"),
outputs=gr.outputs.Label(),
examples=examples,
title="Hate Speech and Offensive Language Classifier",
description=short_description
)
hate_speech.launch()