Spaces:
Running
Running
Add demo
Browse files- README.md +9 -4
- app.py +202 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,11 +1,16 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.37.2
|
| 8 |
app_file: app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
|
|
|
| 1 |
---
|
| 2 |
+
title: OpenVINO NNCF quantization
|
| 3 |
+
emoji: 🦀
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.37.2
|
| 8 |
app_file: app.py
|
| 9 |
+
hf_oauth: true
|
| 10 |
+
hf_oauth_scopes:
|
| 11 |
+
- read-repos
|
| 12 |
+
- write-repos
|
| 13 |
+
- manage-repos
|
| 14 |
pinned: false
|
| 15 |
license: apache-2.0
|
| 16 |
---
|
app.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from huggingface_hub import HfApi, whoami, ModelCard
|
| 5 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 6 |
+
from textwrap import dedent
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
from tempfile import TemporaryDirectory
|
| 10 |
+
|
| 11 |
+
from huggingface_hub.file_download import repo_folder_name
|
| 12 |
+
from optimum.exporters.tasks import TasksManager
|
| 13 |
+
from optimum.intel.utils.constant import _TASK_ALIASES
|
| 14 |
+
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
|
| 15 |
+
from optimum.exporters import TasksManager
|
| 16 |
+
|
| 17 |
+
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
|
| 18 |
+
from optimum.intel import (
|
| 19 |
+
OVModelForAudioClassification,
|
| 20 |
+
OVModelForCausalLM,
|
| 21 |
+
OVModelForFeatureExtraction,
|
| 22 |
+
OVModelForImageClassification,
|
| 23 |
+
OVModelForMaskedLM,
|
| 24 |
+
OVModelForQuestionAnswering,
|
| 25 |
+
OVModelForSeq2SeqLM,
|
| 26 |
+
OVModelForSequenceClassification,
|
| 27 |
+
OVModelForTokenClassification,
|
| 28 |
+
OVStableDiffusionPipeline,
|
| 29 |
+
OVStableDiffusionXLPipeline,
|
| 30 |
+
OVLatentConsistencyModelPipeline,
|
| 31 |
+
OVModelForPix2Struct,
|
| 32 |
+
OVWeightQuantizationConfig,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def process_model(
|
| 39 |
+
model_id: str,
|
| 40 |
+
dtype: str,
|
| 41 |
+
private_repo: bool,
|
| 42 |
+
task: str,
|
| 43 |
+
calibration_dataset: str,
|
| 44 |
+
oauth_token: gr.OAuthToken,
|
| 45 |
+
):
|
| 46 |
+
if oauth_token.token is None:
|
| 47 |
+
raise ValueError("You must be logged in to use this space")
|
| 48 |
+
|
| 49 |
+
model_name = model_id.split("/")[-1]
|
| 50 |
+
username = whoami(oauth_token.token)["name"]
|
| 51 |
+
new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
|
| 52 |
+
|
| 53 |
+
task = TasksManager.map_from_synonym(task)
|
| 54 |
+
if task == "auto":
|
| 55 |
+
try:
|
| 56 |
+
task = TasksManager.infer_task_from_model(model_id)
|
| 57 |
+
except Exception as e:
|
| 58 |
+
raise ValueError(
|
| 59 |
+
"The task could not be automatically inferred. "
|
| 60 |
+
f"Please pass explicitely the task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. {e}"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
task = _TASK_ALIASES.get(task, task)
|
| 64 |
+
if task not in _HEAD_TO_AUTOMODELS:
|
| 65 |
+
raise ValueError(
|
| 66 |
+
f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if task == "text2text-generation":
|
| 70 |
+
raise ValueError("Export of Seq2Seq models is currently disabled.")
|
| 71 |
+
|
| 72 |
+
auto_model_class = _HEAD_TO_AUTOMODELS[task]
|
| 73 |
+
pattern = r"(.*)?openvino(.*)?\_model.xml"
|
| 74 |
+
ov_files = _find_files_matching_pattern(
|
| 75 |
+
model_id, pattern, use_auth_token=oauth_token.token
|
| 76 |
+
)
|
| 77 |
+
export = len(ov_files) == 0
|
| 78 |
+
quantization_config = OVWeightQuantizationConfig(bits=8 if dtype == "int8" else 4)
|
| 79 |
+
api = HfApi(token=oauth_token.token)
|
| 80 |
+
|
| 81 |
+
with TemporaryDirectory() as d:
|
| 82 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
| 83 |
+
os.makedirs(folder)
|
| 84 |
+
try:
|
| 85 |
+
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
|
| 86 |
+
|
| 87 |
+
ov_model = eval(auto_model_class).from_pretrained(
|
| 88 |
+
model_id, export=export, quantization_config=quantization_config
|
| 89 |
+
)
|
| 90 |
+
ov_model.save_pretrained(folder)
|
| 91 |
+
|
| 92 |
+
new_repo_url = api.create_repo(
|
| 93 |
+
repo_id=new_repo_id, exist_ok=True, private=private_repo
|
| 94 |
+
)
|
| 95 |
+
new_repo_id = new_repo_url.repo_id
|
| 96 |
+
print("Repo created successfully!", new_repo_url)
|
| 97 |
+
|
| 98 |
+
file_names = (f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)))
|
| 99 |
+
|
| 100 |
+
for file in file_names:
|
| 101 |
+
file_path = os.path.join(folder, file)
|
| 102 |
+
try:
|
| 103 |
+
api.upload_file(
|
| 104 |
+
path_or_fileobj=file_path,
|
| 105 |
+
path_in_repo=file,
|
| 106 |
+
repo_id=new_repo_id,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
raise Exception(f"Error uploading file {file_path}: {e}")
|
| 111 |
+
|
| 112 |
+
try:
|
| 113 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 114 |
+
except:
|
| 115 |
+
card = ModelCard("")
|
| 116 |
+
|
| 117 |
+
if card.data.tags is None:
|
| 118 |
+
card.data.tags = []
|
| 119 |
+
card.data.tags.append("openvino")
|
| 120 |
+
card.data.base_model = model_id
|
| 121 |
+
card.text = dedent(
|
| 122 |
+
f"""
|
| 123 |
+
This model was exported to OpenVINO from [`{model_id}`](https://huggingface.co/{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space.
|
| 124 |
+
|
| 125 |
+
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
| 126 |
+
|
| 127 |
+
First make sure you have optimum-intel installed:
|
| 128 |
+
|
| 129 |
+
```bash
|
| 130 |
+
pip install optimum[openvino]
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
To load your model you can do as follows:
|
| 134 |
+
|
| 135 |
+
```python
|
| 136 |
+
from optimum.intel import {auto_model_class}
|
| 137 |
+
|
| 138 |
+
model_id = {new_repo_id}
|
| 139 |
+
model = {auto_model_class}.from_pretrained(model_id)
|
| 140 |
+
```
|
| 141 |
+
"""
|
| 142 |
+
)
|
| 143 |
+
card_path = os.path.join(folder, "README.md")
|
| 144 |
+
card.save(card_path)
|
| 145 |
+
|
| 146 |
+
api.upload_file(
|
| 147 |
+
path_or_fileobj=card_path,
|
| 148 |
+
path_in_repo="README.md",
|
| 149 |
+
repo_id=new_repo_id,
|
| 150 |
+
)
|
| 151 |
+
return f"Uploaded successfully with {dtype} option! Find your repo <a href='{new_repo_url}'"
|
| 152 |
+
finally:
|
| 153 |
+
shutil.rmtree(folder, ignore_errors=True)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
with gr.Blocks() as demo:
|
| 157 |
+
gr.Markdown("You must be logged in to use this space")
|
| 158 |
+
gr.LoginButton(min_width=250)
|
| 159 |
+
|
| 160 |
+
model_id = HuggingfaceHubSearch(
|
| 161 |
+
label="Hub Model ID",
|
| 162 |
+
placeholder="Search for model id on the hub",
|
| 163 |
+
search_type="model",
|
| 164 |
+
)
|
| 165 |
+
dtype = gr.Dropdown(
|
| 166 |
+
["int8", "int4"],
|
| 167 |
+
value="int8",
|
| 168 |
+
label="Precision data types",
|
| 169 |
+
filterable=False,
|
| 170 |
+
visible=True,
|
| 171 |
+
)
|
| 172 |
+
private_repo = gr.Checkbox(
|
| 173 |
+
value=False,
|
| 174 |
+
label="Private Repo",
|
| 175 |
+
info="Create a private repo under your username",
|
| 176 |
+
)
|
| 177 |
+
task = gr.File(
|
| 178 |
+
value="auto",
|
| 179 |
+
label="Task : can be left to auto, will be automatically inferred",
|
| 180 |
+
max_lines=1,
|
| 181 |
+
)
|
| 182 |
+
calibration_dataset = gr.File(label="Calibration dataset", value="", visible=False)
|
| 183 |
+
interface = gr.Interface(
|
| 184 |
+
fn=process_model,
|
| 185 |
+
inputs=[
|
| 186 |
+
model_id,
|
| 187 |
+
dtype,
|
| 188 |
+
private_repo,
|
| 189 |
+
calibration_dataset,
|
| 190 |
+
task,
|
| 191 |
+
],
|
| 192 |
+
outputs=[
|
| 193 |
+
gr.Markdown(label="output"),
|
| 194 |
+
],
|
| 195 |
+
title="Quantize your model with OpenVINO NNCF ⚡!",
|
| 196 |
+
description="The space takes an HF repo as an input, quantize it and export it to OpenVINO, then push it to a repo under your HF user namespace.",
|
| 197 |
+
api_name=False,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
interface.render()
|
| 201 |
+
|
| 202 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.23.4
|
| 2 |
+
optimum[diffusers]==1.20.0
|
| 3 |
+
optimum-intel[openvino]==1.18.0
|
| 4 |
+
gradio[oauth]>=4.28.0
|
| 5 |
+
gradio_huggingfacehub_search==0.0.6
|