import gradio as gr import torch from diffusers import StableDiffusionXLImg2ImgPipeline from diffusers.utils import load_image from PIL import Image import requests #from diffusers import DiffusionPipeline ''' pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe = pipe.to("cpu") url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" def run_fn(img_url): init_image = load_image(url).convert("RGB") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt, image=init_image).images return image ''' device = "cuda" if torch.cuda.is_available() else "cpu" #pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0") pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0") pipe = pipe.to(device) def resize(value,img): img = Image.open(requests.get(img, stream=True).raw) img.save("tmp_im.png") img = Image.open("tmp_im.png") #img = img.resize((value,value)) return img def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength): #source_img = load_image(source_img).convert("RGB") generator = torch.Generator(device).manual_seed(seed) source_image = resize(768, source_img) source_image.save('source.png') image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0] return image gr.Interface(fn=infer, inputs=[gr.Textbox(), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(2, 15, value = 7, label = 'Guidance Scale'), gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)], outputs='image').launch()