hf-model-search / app.py
Omnibus's picture
Update app.py
2ba68cf verified
from huggingface_hub import InferenceClient, HfApi
import gradio as gr
import datetime
return_list=[]
api=HfApi()
model_list = api.list_models(filter="text-generation")
this_obj = list(model_list)
for i,eb in enumerate(this_obj):
return_list.append(this_obj[i].id)
def search_models(a=None):
model_list = api.list_models(filter="text-generation")
this_obj = list(model_list)
for i,eb in enumerate(this_obj):
return_list.append(this_obj[i].id)
return gr.update(choices=[m for m in return_list],interactive=True)
'''
def search_models(query=None,amount=20):
model_list = api.list_models(filter="text-generation", search =f'{query}')
#print (model_list)
#print (dir(model_list))
this_obj = list(model_list)
#print (len(this_obj))
#print (this_obj[0])
#print (this_obj[0].id)
for i,eb in enumerate(this_obj):
return_list.append(this_obj[i].id)
return gr.update(choices=[m for m in return_list],interactive=True)
'''
def test_fn():
out_box=[]
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=30,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=42,
)
prompt = "what is a cat?"
for i,ea in enumerate(this_obj):
model = this_obj[i].id
try:
client = InferenceClient(f'{model}')
time = datetime.datetime.now()
out = client.text_generation(prompt, **generate_kwargs)
print (this_obj[i].id +"--"+out)
tot_time=datetime.datetime.now()-time
out_box.append({"name":this_obj[i].id, "error":f"Function 1 Error :: {e}", "success":f"{out}","time":tot_time})
yield (out_box)
except Exception as e:
print (f'{this_obj[i].id}--Function 2 Error :: {e}')
tot_time=datetime.datetime.now()-time
out_box.append({"name":this_obj[i].id, "error":f"Function 2 Error :: {e}", "success":"","time":tot_time})
yield (out_box)
'''
try:
client2 = InferenceClient(this_obj[i].id)
time = datetime.datetime.now()
out = client2.text_generation(prompt, **generate_kwargs, stream=False)
print (this_obj[i].id +"--"+out1)
tot_time=datetime.datetime.now()-time
out_box.append({"name":this_obj[i].id, "error":f"Function 1 Error :: {e}", "success":f"{out1}","time":tot_time})
yield (out_box)
except Exception as e:
print (f'{this_obj[i].id}--Function 3 Error :: {e}')
tot_time=datetime.datetime.now()-time
out_box.append({"name":this_obj[i].id, "error":f"Function 3 Error :: {e}", "success":"","time":tot_time})
yield (out_box)
'''
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, inf_client, stream, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
client = InferenceClient(inf_client)
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=30,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
output = client.text_generation(prompt, **generate_kwargs, stream=stream)
'''
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(prompt, **generate_kwargs, stream=stream)
#stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=stream, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
#yield output
'''
return output
additional_inputs=[
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048,
minimum=0,
maximum=1048*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
]
with gr.Blocks() as app:
gr.Markdown("""
graph TD
A[Start] -->B[Step 1]
B --> C[Step 2]
C --> D[Step 3] --> A
D --> E[Step 4]
E --> F[End]""")
with gr.Row():
inp_query=gr.Textbox()
models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
button=gr.Button()
stop_button=gr.Button("Stop")
text=gr.JSON()
inp_query.change(search_models,inp_query,models_dd)
go=button.click(test_fn,None,text)
stop_button.click(None,None,None,cancels=[go])
app.launch()
"""gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)"""