from huggingface_hub import InferenceClient, HfApi, upload_file import datetime import gradio as gr import requests import random import prompts import json import uuid import os token=os.environ.get("HF_TOKEN") username="omnibus" dataset_name="tmp" save_data=f'https://huggingface.co/datasets/{username}/{dataset_name}/raw/main/' api=HfApi(token="") VERBOSE=False history = [] hist_out= [] summary =[] main_point=[] summary.append("") main_point.append("") list_of_users=["user1","user2","user3"] persona=[ {"name":"Mr. Nice Guy", "description":"Nice","personality":"friendly, caring, helpful and informative. You always compliment people, and stick up for them, and you have no patience for bullies."}, {"name":"Mr. Mean Guy", "description":"Mean","personality":"a total asshole. You think you are really smart, but really you are just ignorant and mean. You don't have time for everybodies stupidity, and you let them know that in the comments."}, {"name":"Smarty Pants", "description":"Genius","personality":"intelligent, informative, know-it-all. You are the smartest guy in the room and always one-up the blog poster to show how mart you are."}, {"name":"Try Hard", "description":"Not Genius","personality":"dimwitted, lacking understanding about any topic. You always ask really irrelevant questions about the post."}, {"name":"Class Clown", "description":"Humerous","personality":"humerous, funny. You turn everything into a joke. Make a joke about the post."}, ] persona_names=[] for ea in persona: persona_names.append(ea['name']) models=[ "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x7B-Instruct-v0.2", "google/gemma-7b", "google/gemma-7b-it", "google/gemma-2b", "google/gemma-2b-it", "meta-llama/Llama-2-7b-chat-hf", "codellama/CodeLlama-70b-Instruct-hf", "openchat/openchat-3.5-0106", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", ] client_z=[] def load_models(inp): if VERBOSE==True: print(type(inp)) print(inp) print(models[inp]) client_z.clear() client_z.append(InferenceClient(models[inp])) #if "mistralai" in models[inp]: # tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") return gr.update(label=models[inp]) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt agents =[ "COMMENTER", "BLOG_POSTER", "REPLY_TO_COMMENTER", "COMPRESS_HISTORY_PROMPT" ] temperature=0.9 max_new_tokens=256 max_new_tokens2=4000 top_p=0.95 repetition_penalty=1.0, def compress_history(formatted_prompt): print("###############\nRUNNING COMPRESS HISTORY\n###############\n") seed = random.randint(1,1111111111111111) agent=prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0]) system_prompt=agent temperature = 0.9 if temperature < 1e-2: temperature = 1e-2 generate_kwargs = dict( temperature=temperature, max_new_tokens=1048, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=seed, ) #history.append((prompt,"")) #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) formatted_prompt = formatted_prompt client=client_z[0] stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text #history.append((output,history)) print(output) print(main_point[0]) return output def comment_generate(prompt, history,post_check,full_conv,persona2, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1028, top_p=0.95, repetition_penalty=1.3,): current_time = str(datetime.datetime.now()) uid=uuid.uuid4() print(post_check) print("###############\nRUNNING QUESTION GENERATOR\n###############\n") seed = random.randint(1,1111111111111111) agent=prompts.COMMENTER.format(focus=post_check['output'],persona=persona[persona2]['personality']) system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) formatted_prompt = f"[INST] {system_prompt}, {prompt} [/INST]" client=client_z[0] stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text history.append((output,None)) reply_json= {'user':'','datetime':'','reply':''} comment_json= {'user':persona[persona2]['name'],'datetime':current_time,'comment':output,'reply_list':[]} comment_out=post_check['comment_list'] print(comment_out) comment_out.append(comment_json) out_json = {'user':post_check['user'],'datetime':post_check['datetime'],'file_name':post_check['file_name'], 'title':post_check['title'],'blog':1,'comment':post_check['comment']+1,'reply':post_check['reply'], "prompt":post_check['prompt'],"output":post_check['output'],'comment_list':comment_out} html_out=load_html(out_json) #out_json = {'user':list_of_users[0],'datetime':current_time,'file_name':filename,'title':title,'blog':1,'comment':0,'reply':0,"prompt":prompt,"output":output,'comment_list':[]} file_n = f'{post_check["file_name"]}.json' print(file_n) ''' r = requests.get(f'{save_data}book1/{file_n}') print(f'status code main:: {r.status_code}') if r.status_code==200: try: lod = json.loads(r.text) print(f'lod:: {lod}') lod[0]['comment']=lod[0]['comment']+1 lod[0]['comment_list'].append({'user':persona[persona2]['name'],'datetime':'','comment':output,'reply_list':[]}) #hist_out.append(out_json) #try: # for ea in ''' with open(f'{uid}.json', 'w') as f: json_hist=json.dumps(out_json, indent=4) f.write(json_hist) f.close() upload_file( path_or_fileobj =f"{uid}.json", path_in_repo = f"book1/{file_n}", repo_id =f"{username}/{dataset_name}", repo_type = "dataset", token=token, ) #except Exception as e: # print(e) return "",history,out_json,out_json,out_json,html_out def reply_generate(prompt, history,post_check,full_conv,persona1,reply_to_comment, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1028, top_p=0.95, repetition_penalty=1.0,): #def question_generate(prompt, history): current_time = str(datetime.datetime.now()) uid=uuid.uuid4() print(post_check) #full_conv=history print(f'full_conv::\n{full_conv}') print("###############\nRUNNING REPLY GENERATOR\n###############\n") seed = random.randint(1,1111111111111111) agent=prompts.REPLY_TO_COMMENTER.format(focus=post_check['output'],comment=post_check['comment_list'][reply_to_comment]['comment'],persona=persona[persona1]['personality']) system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) formatted_prompt = f"[INST] {system_prompt}, {prompt} [/INST]" client=client_z[0] stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text history.append((output,None)) reply_json= {'user':persona[persona1]['name'],'datetime':current_time,'reply':output} post_check['comment_list'][reply_to_comment]['reply_list'].append(reply_json) out_json = {'user':post_check['user'],'datetime':post_check['datetime'],'file_name':post_check['file_name'], 'title':post_check['title'],'blog':1,'comment':post_check['comment'],'reply':post_check['reply']+1, "prompt":post_check['prompt'],"output":post_check['output'],'comment_list':post_check['comment_list']} html_out=load_html(out_json) file_n = f'{post_check["file_name"]}.json' print(file_n) with open(f'{uid}.json', 'w') as f: json_hist=json.dumps(out_json, indent=4) f.write(json_hist) f.close() upload_file( path_or_fileobj =f"{uid}.json", path_in_repo = f"book1/{file_n}", repo_id =f"{username}/{dataset_name}", repo_type = "dataset", token=token, ) #except Exception as e: # print(e) return "",history,out_json,out_json,out_json,html_out def create_valid_filename(invalid_filename: str) -> str: """Converts invalid characters in a string to be suitable for a filename.""" invalid_filename.replace(" ","-") valid_chars = '-'.join(invalid_filename.split()) allowed_chars = ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '_', '-') return ''.join(char for char in valid_chars if char in allowed_chars) def load_html(conv): ht="" ht+=f"""
""" ht+=f"""

{conv['title']}


{conv['user']}

{conv['datetime']}
{conv['output']}
""" if conv['comment_list']: for com in conv['comment_list']: ht+=f"""
{com['user']}

{com['datetime']}
{com['comment']}
""" if com['reply_list']: for repl in com['reply_list']: ht+=f"""
{repl['user']}

{repl['datetime']}
{repl['reply']}
""" ht+=f"""
""" with open('index.html','r') as h: html=h.read() html = html.replace("$body",f"{ht}") h.close() return html def generate(prompt, history, post_check,full_conv,persona1, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1048, top_p=0.95, repetition_penalty=1.0): print(persona1) html_out="" #main_point[0]=prompt #print(datetime.datetime.now()) uid=uuid.uuid4() current_time = str(datetime.datetime.now()) title="" filename=create_valid_filename(f'{current_time}---{title}') current_time=current_time.replace(":","-") current_time=current_time.replace(".","-") print (current_time) agent=prompts.BLOG_POSTER.format(persona=persona[persona1]['personality']) system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) hist_out=[] sum_out=[] json_hist={} json_obj={} #full_conv=[] post_cnt=1 if not post_check: post_check={} #if not full_conv: # full_conv=[] seed = random.randint(1,1111111111111111) if not post_check: print("writing blog") generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens2, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) if prompt.startswith(' \"'): prompt=prompt.strip(' \"') formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) if len(formatted_prompt) < (40000): print(len(formatted_prompt)) client=client_z[0] stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" #if history: # yield history if not prompt: prompt_out = None else: prompt_out=prompt for response in stream: output += response.token.text yield "", [(prompt_out,output)],post_check,post_check,summary[0],json_obj, json_hist,html_out if not title: for line in output.split("\n"): if "title" in line.lower() and ":" in line.lower(): title = line.split(":")[1] if title.startswith(' \"'): title=title.strip(' \"') print(f'title:: {title}') filename=create_valid_filename(f'{current_time}---{title}') #out_json = {'user':persona[persona1]['name'],'datetime':current_time,'file_name':filename,'title':title,'blog':1,'comment':0,'reply':0,"prompt":prompt,"output":output,'comment_list':[]} reply_json= {'user':'','datetime':'','reply':''} comment_json= {'user':'','datetime':'','comment':'','reply_list':[reply_json]} out_json = {'user':persona[persona1]['name'],'datetime':current_time,'file_name':filename, 'title':title,'blog':1,'comment':0,'reply':0, "prompt":prompt,"output":output,'comment_list':[]} #hist_out.append(out_json) #try: # for ea in with open(f'{uid}.json', 'w') as f: json_hist=json.dumps(out_json, indent=4) f.write(json_hist) f.close() upload_file( path_or_fileobj =f"{uid}.json", path_in_repo = f"book1/{filename}.json", repo_id =f"{username}/{dataset_name}", repo_type = "dataset", token=token, ) else: formatted_prompt = format_prompt(f"{prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0])}, {summary[0]}", history) #current_time = str(datetime.datetime.now().timestamp()).split(".",1)[0] #filename=f'{filename}-{current_time}' history = [] output = compress_history(formatted_prompt) summary[0]=output sum_json = {"summary":summary[0]} sum_out.append(sum_json) with open(f'{uid}-sum.json', 'w') as f: json_obj=json.dumps(sum_out, indent=4) f.write(json_obj) f.close() upload_file( path_or_fileobj =f"{uid}-sum.json", path_in_repo = f"book1/{filename}-summary.json", repo_id =f"{username}/{dataset_name}", repo_type = "dataset", token=token, ) #prompt = question_generate(output, history) #main_point[0]=output #full_conv.append((output,None,None)) html_out=load_html(out_json) #post_check={'filename':filename,'user':persona[persona1]['name'],'datetime':current_time,'title':title,'blog':1,'comment':0,'reply':0} yield prompt, history,out_json,out_json,summary[0],out_json,json_hist,html_out else: print("passing blog") with gr.Blocks() as app: chat_handler=gr.State() post_handler=gr.State() html = gr.HTML() chatbot=gr.Chatbot(visible=False) with gr.Row(): persona1=gr.Dropdown(label="Bot 1 Persona",value=persona_names[0],type='index',choices=[p for p in persona_names]) persona2=gr.Dropdown(label="Bot 2 Persona",value=persona_names[3],type='index',choices=[p for p in persona_names]) with gr.Group(): msg = gr.Textbox(label="Optional Prompting") with gr.Row(): submit_b = gr.Button("Blog Post") submit_c = gr.Button("Comment") submit_r = gr.Button("OP Reply") reply_num= gr.Number(label="Replying to Comment:", value=0) with gr.Group(): with gr.Row(): stop_b = gr.Button("Stop") clear = gr.ClearButton([msg, chatbot,chat_handler,post_handler,html]) with gr.Row(visible=False): m_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True) tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens") with gr.Column(visible=False): sumbox=gr.Textbox("Summary", max_lines=100) sum_out_box=gr.JSON(label="Summaries") hist_out_box=gr.JSON(label="History") m_choice.change(load_models,m_choice,[chatbot]) #app.load(load_models,m_choice,[chatbot]).then(load_html,None,html) app.load(load_models,m_choice,[chatbot]) sub_b = submit_b.click(generate, [msg,chatbot,post_handler,chat_handler,persona1,tokens],[msg,chatbot,post_handler,chat_handler,sumbox,sum_out_box,hist_out_box,html]) sub_c = submit_c.click(comment_generate, [msg,chatbot,post_handler,chat_handler,persona2],[msg,chatbot,sumbox,sum_out_box,hist_out_box,html]) sub_r = submit_r.click(reply_generate, [msg,chatbot,post_handler,chat_handler,persona1,reply_num],[msg,chatbot,sumbox,sum_out_box,hist_out_box,html]) sub_e = msg.submit(generate, [msg,chatbot,post_handler,chat_handler,chat_handler,persona1,tokens],[msg,chatbot,post_handler,chat_handler,sumbox,sum_out_box,hist_out_box,html]) stop_b.click(None,None,None, cancels=[sub_b,sub_e,sub_c,sub_r]) app.queue(default_concurrency_limit=20).launch()