File size: 20,608 Bytes
e72d7b7 b73125b e72d7b7 da76781 e72d7b7 99cd660 e72d7b7 99cd660 95ce061 99cd660 c0d8821 3dea939 c0d8821 99cd660 e72d7b7 a2f95d7 e72d7b7 c0d8821 e72d7b7 08a3a8b e72d7b7 c0d8821 e72d7b7 99cd660 e72d7b7 a055bad e72d7b7 95ce061 a055bad 74644ec 08a3a8b e72d7b7 99cd660 e72d7b7 99cd660 e72d7b7 49eebbd e72d7b7 b67a2f5 49eebbd eba8b1d e5b450b 95ce061 49eebbd a2f95d7 a66d7ff 2fd7c54 a66d7ff a2f95d7 08a3a8b a2f95d7 99cd660 a2f95d7 e72d7b7 bbd06c4 05ada67 3add84f a055bad 3add84f 5ec32be 58ded98 13d4e12 58ded98 644e87c 13d4e12 9543448 13d4e12 bbd06c4 5ec32be 4563510 bbd06c4 2f29eaf 3e1a621 a2f95d7 e72d7b7 010002c e72d7b7 1fcc518 2f29eaf 7556fb9 2f29eaf 1fcc518 f29440c d3708e0 1fcc518 2f29eaf 1fcc518 1ffd975 1fcc518 1ffd975 1fcc518 7556fb9 1fcc518 49eebbd a055bad d3708e0 1fcc518 e72d7b7 5ec32be a2f95d7 e72d7b7 a2f95d7 e72d7b7 a2f95d7 010002c a712c99 a2f95d7 bbd06c4 a2f95d7 644e87c eaa17b0 e72d7b7 a2f95d7 99cd660 e72d7b7 bbd06c4 010002c c1ae534 010002c e72d7b7 8addf64 e72d7b7 a2f95d7 e72d7b7 a712c99 5ec32be a2f95d7 5ec32be b73125b bbd06c4 05ada67 bbd06c4 37686b3 176bcef 3405e06 1ffd975 37686b3 0fcf8a1 1fcc518 0fcf8a1 1fcc518 c0d8821 99cd660 0fcf8a1 99cd660 cb7e6ed d0b8411 0fcf8a1 2f29eaf a055bad a66d7ff 1fcc518 0fcf8a1 dac269f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
from huggingface_hub import InferenceClient, HfApi, upload_file
import datetime
import gradio as gr
import random
import prompts
import json
import uuid
import os
token=os.environ.get("HF_TOKEN")
username="omnibus"
dataset_name="tmp"
api=HfApi(token="")
VERBOSE=False
history = []
hist_out= []
summary =[]
main_point=[]
summary.append("")
main_point.append("")
models=[
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mixtral-8x7B-Instruct-v0.2",
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it",
"meta-llama/Llama-2-7b-chat-hf",
"codellama/CodeLlama-70b-Instruct-hf",
"openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
]
client_z=[]
def load_models(inp):
if VERBOSE==True:
print(type(inp))
print(inp)
print(models[inp])
client_z.clear()
client_z.append(InferenceClient(models[inp]))
#if "mistralai" in models[inp]:
# tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
return gr.update(label=models[inp])
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"COMMENTER",
"BLOG_POSTER",
"REPLY_TO_COMMENTER",
"COMPRESS_HISTORY_PROMPT"
]
temperature=0.9
max_new_tokens=256
max_new_tokens2=4000
top_p=0.95
repetition_penalty=1.0,
def compress_history(formatted_prompt):
print("###############\nRUNNING COMPRESS HISTORY\n###############\n")
seed = random.randint(1,1111111111111111)
agent=prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0])
system_prompt=agent
temperature = 0.9
if temperature < 1e-2:
temperature = 1e-2
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=1048,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
#history.append((prompt,""))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
formatted_prompt = formatted_prompt
client=client_z[0]
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
#history.append((output,history))
print(output)
print(main_point[0])
return output
def comment_generate(prompt, history,post_check,full_conv, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1028, top_p=0.95, repetition_penalty=1.0,):
#def question_generate(prompt, history):
print(post_check)
#full_conv=history
print(f'full_conv::\n{full_conv}')
print("###############\nRUNNING QUESTION GENERATOR\n###############\n")
seed = random.randint(1,1111111111111111)
agent=prompts.COMMENTER.format(focus=main_point[0])
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
#history.append((prompt,""))
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
client=client_z[0]
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
history.append((output,None))
comment_cnt=post_check['comment']
print(type(comment_cnt))
post_check['comment']=comment_cnt+1
#out_json = {'user':"",'datetime':current_time,'title':title,'blog':1,'comment':0,'reply':0,"prompt":prompt,"output":output}
#full_conv[-1]+=(output,)
full_conv.append((None,output,None))
html_out=load_html(full_conv,None)
#history.append((output,history))
#[textbox, chatbot, textbox, json, json, html]
return "",history,post_check,post_check,post_check,html_out
def reply_generate(prompt, history,post_check,full_conv, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1028, top_p=0.95, repetition_penalty=1.0,):
#def question_generate(prompt, history):
print(post_check)
#full_conv=history
print(f'full_conv::\n{full_conv}')
print("###############\nRUNNING QUESTION GENERATOR\n###############\n")
seed = random.randint(1,1111111111111111)
agent=prompts.REPLY_TO_COMMENTER.format(focus=main_point[0])
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
#history.append((prompt,""))
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
client=client_z[0]
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
history.append((output,None))
comment_cnt=post_check['comment']
print(type(comment_cnt))
post_check['comment']=comment_cnt+1
#out_json = {'user':"",'datetime':current_time,'title':title,'blog':1,'comment':0,'reply':0,"prompt":prompt,"output":output}
#full_conv[-1]+=(output,)
full_conv.append((None,output,None))
html_out=load_html(full_conv,None)
#history.append((output,history))
#[textbox, chatbot, textbox, json, json, html]
return "",history,post_check,post_check,post_check,html_out
def reply_generate_OG(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,):
#def question_generate(prompt, history):
print("###############\nRUNNING BLOG POSTER REPLY\n###############\n")
seed = random.randint(1,1111111111111111)
agent=prompts.REPLY_TO_COMMENTER.format(focus=main_point[0])
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
#history.append((prompt,""))
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
client=client_z[0]
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
#history.append((output,history))
return output
def create_valid_filename(invalid_filename: str) -> str:
"""Converts invalid characters in a string to be suitable for a filename."""
invalid_filename.replace(" ","-")
valid_chars = '-'.join(invalid_filename.split())
allowed_chars = ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '_', '-')
return ''.join(char for char in valid_chars if char in allowed_chars)
def load_html(inp,title):
ht=""
if inp:
for i,ea in enumerate(inp):
blog,comm,repl=ea
#print(f'outp:: {outp}')
#print(f'prom:: {prom}')
ht+=f"""<div class="div_box">"""
if blog:
ht+=f"""<pre class="bpost">{blog}</pre>"""
if comm:
ht+=f"""<pre class="resp1">{comm}</pre>"""
if repl:
ht+=f"""<pre class="resp2">{repl}</pre>"""
ht+=f"""</div>"""
with open('index.html','r') as h:
html=h.read()
html = html.replace("$body",f"{ht}")
html = html.replace("$title",f"{title}")
h.close()
return html
def load_html_OG(inp,title):
ht=""
if inp:
for i,ea in enumerate(inp):
outp,prom=ea
#print(f'outp:: {outp}')
#print(f'prom:: {prom}')
if i == 0:
ht+=f"""<div class="div_box">
<pre class="bpost">{outp}</pre>
<pre class="resp1">{prom}</pre>
</div>"""
else:
ht+=f"""<div class="div_box">
<pre class="resp2">{outp}</pre>
<pre class="resp2">{prom}</pre>
</div>"""
with open('index.html','r') as h:
html=h.read()
html = html.replace("$body",f"{ht}")
html = html.replace("$title",f"{title}")
h.close()
return html
def generate(prompt, history, post_check,full_conv, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1048, top_p=0.95, repetition_penalty=1.0):
html_out=""
#main_point[0]=prompt
#print(datetime.datetime.now())
uid=uuid.uuid4()
current_time = str(datetime.datetime.now())
title=""
filename=create_valid_filename(f'{current_time}---{title}')
current_time=current_time.replace(":","-")
current_time=current_time.replace(".","-")
print (current_time)
agent=prompts.BLOG_POSTER
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
hist_out=[]
sum_out=[]
json_hist={}
json_obj={}
full_conv=[]
post_cnt=1
if not post_check:
post_check={}
if not full_conv:
full_conv=[]
seed = random.randint(1,1111111111111111)
if not post_check:
print("writing blog")
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens2,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
if prompt.startswith(' \"'):
prompt=prompt.strip(' \"')
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
if len(formatted_prompt) < (40000):
print(len(formatted_prompt))
client=client_z[0]
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
#if history:
# yield history
for response in stream:
output += response.token.text
yield '', [(prompt,output)],post_check,full_conv,summary[0],json_obj, json_hist,html_out
if not title:
for line in output.split("\n"):
if "title" in line.lower() and ":" in line.lower():
title = line.split(":")[1]
print(f'title:: {title}')
filename=create_valid_filename(f'{current_time}---{title}')
out_json = {'user':"",'datetime':current_time,'title':title,'blog':1,'comment':0,'reply':0,"prompt":prompt,"output":output}
hist_out.append(out_json)
#try:
# for ea in
with open(f'{uid}.json', 'w') as f:
json_hist=json.dumps(hist_out, indent=4)
f.write(json_hist)
f.close()
upload_file(
path_or_fileobj =f"{uid}.json",
path_in_repo = f"book1/{filename}.json",
repo_id =f"{username}/{dataset_name}",
repo_type = "dataset",
token=token,
)
else:
formatted_prompt = format_prompt(f"{prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0])}, {summary[0]}", history)
#current_time = str(datetime.datetime.now().timestamp()).split(".",1)[0]
#filename=f'{filename}-{current_time}'
history = []
output = compress_history(formatted_prompt)
summary[0]=output
sum_json = {"summary":summary[0]}
sum_out.append(sum_json)
with open(f'{uid}-sum.json', 'w') as f:
json_obj=json.dumps(sum_out, indent=4)
f.write(json_obj)
f.close()
upload_file(
path_or_fileobj =f"{uid}-sum.json",
path_in_repo = f"book1/{filename}-summary.json",
repo_id =f"{username}/{dataset_name}",
repo_type = "dataset",
token=token,
)
#prompt = question_generate(output, history)
#main_point[0]=prompt
full_conv.append((output,None,None))
html_out=load_html(full_conv,title)
post_check={'user':"",'datetime':current_time,'title':title,'blog':1,'comment':0,'reply':0}
yield prompt, history,post_check,full_conv,summary[0],json_obj,json_hist,html_out
else:
print("passing blog")
def generate_OG(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1048, top_p=0.95, repetition_penalty=1.0):
html_out=""
#main_point[0]=prompt
#print(datetime.datetime.now())
uid=uuid.uuid4()
current_time = str(datetime.datetime.now())
title=""
filename=create_valid_filename(f'{current_time}---{title}')
current_time=current_time.replace(":","-")
current_time=current_time.replace(".","-")
print (current_time)
agent=prompts.BLOG_POSTER
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
hist_out=[]
sum_out=[]
json_hist={}
json_obj={}
full_conv=[]
post_cnt=1
while True:
seed = random.randint(1,1111111111111111)
if post_cnt==1:
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens2,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
if prompt.startswith(' \"'):
prompt=prompt.strip(' \"')
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
post_cnt+=1
else:
system_prompt=prompts.REPLY_TO_COMMENTER.format(focus=main_point[0])
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens2,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
if prompt.startswith(' \"'):
prompt=prompt.strip(' \"')
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
print("###############\nRUNNING REPLY TO COMMENTER\n###############\n")
print (system_prompt)
if len(formatted_prompt) < (40000):
print(len(formatted_prompt))
client=client_z[0]
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
#if history:
# yield history
for response in stream:
output += response.token.text
yield '', [(prompt,output)],summary[0],json_obj, json_hist,html_out
if not title:
for line in output.split("\n"):
if "title" in line.lower() and ":" in line.lower():
title = line.split(":")[1]
print(f'title:: {title}')
filename=create_valid_filename(f'{current_time}---{title}')
out_json = {"prompt":prompt,"output":output}
prompt = question_generate(output, history)
#output += prompt
history.append((prompt,output))
print ( f'Prompt:: {len(prompt)}')
#print ( f'output:: {output}')
print ( f'history:: {len(formatted_prompt)}')
hist_out.append(out_json)
#try:
# for ea in
with open(f'{uid}.json', 'w') as f:
json_hist=json.dumps(hist_out, indent=4)
f.write(json_hist)
f.close()
upload_file(
path_or_fileobj =f"{uid}.json",
path_in_repo = f"book1/{filename}.json",
repo_id =f"{username}/{dataset_name}",
repo_type = "dataset",
token=token,
)
else:
formatted_prompt = format_prompt(f"{prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0])}, {summary[0]}", history)
#current_time = str(datetime.datetime.now().timestamp()).split(".",1)[0]
#filename=f'{filename}-{current_time}'
history = []
output = compress_history(formatted_prompt)
summary[0]=output
sum_json = {"summary":summary[0]}
sum_out.append(sum_json)
with open(f'{uid}-sum.json', 'w') as f:
json_obj=json.dumps(sum_out, indent=4)
f.write(json_obj)
f.close()
upload_file(
path_or_fileobj =f"{uid}-sum.json",
path_in_repo = f"book1/{filename}-summary.json",
repo_id =f"{username}/{dataset_name}",
repo_type = "dataset",
token=token,
)
prompt = question_generate(output, history)
main_point[0]=prompt
full_conv.append((output,prompt))
html_out=load_html(full_conv,title)
yield prompt, history, summary[0],json_obj,json_hist,html_out
return prompt, history, summary[0],json_obj,json_hist,html_out
with gr.Blocks() as app:
chat_handler=gr.State()
post_handler=gr.State()
html = gr.HTML()
chatbot=gr.Chatbot()
msg = gr.Textbox()
with gr.Row():
submit_b = gr.Button("Blog Post")
submit_c = gr.Button("Comment")
submit_r = gr.Button("OP Reply")
with gr.Row():
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
with gr.Row():
m_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
sumbox=gr.Textbox("Summary", max_lines=100)
with gr.Column():
sum_out_box=gr.JSON(label="Summaries")
hist_out_box=gr.JSON(label="History")
m_choice.change(load_models,m_choice,[chatbot])
app.load(load_models,m_choice,[chatbot]).then(load_html,None,html)
sub_b = submit_b.click(generate, [msg,chatbot,post_handler,chat_handler,chat_handler,tokens],[msg,chatbot,post_handler,chat_handler,sumbox,sum_out_box,hist_out_box,html])
sub_c = submit_c.click(comment_generate, [msg,chatbot,post_handler,chat_handler],[msg,chatbot,sumbox,sum_out_box,hist_out_box,html])
sub_r = submit_r.click(reply_generate, [msg,chatbot,post_handler,chat_handler],[msg,chatbot,sumbox,sum_out_box,hist_out_box,html])
sub_e = msg.submit(generate, [msg,chatbot,post_handler,chat_handler,chat_handler,tokens],[msg,chatbot,post_handler,chat_handler,sumbox,sum_out_box,hist_out_box,html])
stop_b.click(None,None,None, cancels=[sub_b,sub_e,sub_c,sub_r])
app.queue(default_concurrency_limit=20).launch() |