Upload 2 files
Browse files- qwen_embedding_app.py +1014 -0
- requirements.txt +10 -0
qwen_embedding_app.py
ADDED
|
@@ -0,0 +1,1014 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import spaces
|
| 8 |
+
from typing import List, Tuple
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
from transformers import AutoTokenizer, AutoModel
|
| 11 |
+
|
| 12 |
+
# Check for GPU support and configure appropriately
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
zero = torch.Tensor([0]).to(device)
|
| 15 |
+
print(f"Device being used: {zero.device}")
|
| 16 |
+
|
| 17 |
+
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
| 18 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 19 |
+
if left_padding:
|
| 20 |
+
return last_hidden_states[:, -1]
|
| 21 |
+
else:
|
| 22 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 23 |
+
batch_size = last_hidden_states.shape[0]
|
| 24 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
| 25 |
+
|
| 26 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
| 27 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
| 28 |
+
|
| 29 |
+
def tokenize(tokenizer, input_texts, eod_id, max_length):
|
| 30 |
+
batch_dict = tokenizer(input_texts, padding=False, truncation=True, max_length=max_length-2)
|
| 31 |
+
for seq, att in zip(batch_dict["input_ids"], batch_dict["attention_mask"]):
|
| 32 |
+
seq.append(eod_id)
|
| 33 |
+
att.append(1)
|
| 34 |
+
batch_dict = tokenizer.pad(batch_dict, padding=True, return_tensors="pt")
|
| 35 |
+
return batch_dict
|
| 36 |
+
|
| 37 |
+
class QwenEmbedder:
|
| 38 |
+
def __init__(self, embedding_dim=768):
|
| 39 |
+
self.tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Embedding-0.6B', padding_side='left')
|
| 40 |
+
self.model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B')
|
| 41 |
+
# Uncomment below for better performance if GPU available
|
| 42 |
+
# self.model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B',
|
| 43 |
+
# attn_implementation="flash_attention_2",
|
| 44 |
+
# torch_dtype=torch.float16
|
| 45 |
+
# ).cuda()
|
| 46 |
+
self.eod_id = self.tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
| 47 |
+
self.max_length = 8192
|
| 48 |
+
self.embedding_dim = embedding_dim
|
| 49 |
+
self.projection = torch.nn.Linear(768, embedding_dim) if embedding_dim != 768 else None
|
| 50 |
+
|
| 51 |
+
def get_embeddings(self, texts: List[str], with_instruction: bool = False) -> Tensor:
|
| 52 |
+
if with_instruction:
|
| 53 |
+
task = 'Process and understand the following text'
|
| 54 |
+
texts = [get_detailed_instruct(task, text) for text in texts]
|
| 55 |
+
|
| 56 |
+
batch_dict = tokenize(self.tokenizer, texts, self.eod_id, self.max_length)
|
| 57 |
+
batch_dict.to(self.model.device)
|
| 58 |
+
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
outputs = self.model(**batch_dict)
|
| 61 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 62 |
+
|
| 63 |
+
# Project to desired dimension if needed
|
| 64 |
+
if self.projection is not None:
|
| 65 |
+
embeddings = self.projection(embeddings)
|
| 66 |
+
|
| 67 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 68 |
+
|
| 69 |
+
return embeddings
|
| 70 |
+
|
| 71 |
+
def compute_similarity(embedder: QwenEmbedder, text1: str, text2: str) -> float:
|
| 72 |
+
embeddings = embedder.get_embeddings([text1, text2])
|
| 73 |
+
similarity = torch.cosine_similarity(embeddings[0:1], embeddings[1:2]).item()
|
| 74 |
+
return round(similarity, 3)
|
| 75 |
+
|
| 76 |
+
def rerank_documents(embedder: QwenEmbedder, query: str, documents: str) -> List[Tuple[str, float]]:
|
| 77 |
+
docs_list = [doc.strip() for doc in documents.split('\n') if doc.strip()]
|
| 78 |
+
|
| 79 |
+
# Add instruction to query
|
| 80 |
+
task = 'Given a search query, retrieve relevant passages that answer the query'
|
| 81 |
+
query_with_instruct = get_detailed_instruct(task, query)
|
| 82 |
+
|
| 83 |
+
# Get embeddings
|
| 84 |
+
query_embedding = embedder.get_embeddings([query_with_instruct])
|
| 85 |
+
doc_embeddings = embedder.get_embeddings(docs_list)
|
| 86 |
+
|
| 87 |
+
# Calculate similarities
|
| 88 |
+
scores = (query_embedding @ doc_embeddings.T).squeeze(0)
|
| 89 |
+
results = [(doc, float(score)) for doc, score in zip(docs_list, scores)]
|
| 90 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
| 91 |
+
|
| 92 |
+
return [(doc, round(score, 3)) for doc, score in results]
|
| 93 |
+
|
| 94 |
+
def process_batch_embeddings(embedder: QwenEmbedder, texts: str) -> pd.DataFrame:
|
| 95 |
+
text_list = [text.strip() for text in texts.split('\n') if text.strip()]
|
| 96 |
+
if len(text_list) < 1:
|
| 97 |
+
return pd.DataFrame()
|
| 98 |
+
|
| 99 |
+
embeddings = embedder.get_embeddings(text_list)
|
| 100 |
+
scores = (embeddings @ embeddings.T).cpu().numpy()
|
| 101 |
+
|
| 102 |
+
# Create similarity matrix DataFrame
|
| 103 |
+
df_similarities = pd.DataFrame(
|
| 104 |
+
scores,
|
| 105 |
+
index=text_list,
|
| 106 |
+
columns=text_list
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
return df_similarities.round(3)
|
| 110 |
+
|
| 111 |
+
def process_retrieval(embedder: QwenEmbedder, task_prompt: str, queries: str, documents: str) -> pd.DataFrame:
|
| 112 |
+
# Process queries and documents
|
| 113 |
+
query_list = [q.strip() for q in queries.split('\n') if q.strip()]
|
| 114 |
+
doc_list = [d.strip() for d in documents.split('\n') if d.strip()]
|
| 115 |
+
|
| 116 |
+
if not query_list or not doc_list:
|
| 117 |
+
return pd.DataFrame()
|
| 118 |
+
|
| 119 |
+
# Add instruction to queries
|
| 120 |
+
instructed_queries = [get_detailed_instruct(task_prompt, q) for q in query_list]
|
| 121 |
+
|
| 122 |
+
# Get embeddings for both queries and documents
|
| 123 |
+
query_embeddings = embedder.get_embeddings(instructed_queries)
|
| 124 |
+
doc_embeddings = embedder.get_embeddings(doc_list)
|
| 125 |
+
|
| 126 |
+
# Calculate similarity scores
|
| 127 |
+
scores = (query_embeddings @ doc_embeddings.T).cpu().numpy()
|
| 128 |
+
|
| 129 |
+
# Create DataFrame with results
|
| 130 |
+
df = pd.DataFrame(scores, index=query_list, columns=doc_list)
|
| 131 |
+
return df.round(3)
|
| 132 |
+
|
| 133 |
+
def process_cross_lingual(embedder: QwenEmbedder, arabic_text: str, english_text: str) -> dict:
|
| 134 |
+
texts = [arabic_text, english_text]
|
| 135 |
+
embeddings = embedder.get_embeddings(texts)
|
| 136 |
+
similarity = torch.cosine_similarity(embeddings[0:1], embeddings[1:2]).item()
|
| 137 |
+
return {"similarity": round(similarity, 3)}
|
| 138 |
+
|
| 139 |
+
def classify_text(embedder: QwenEmbedder, text: str, categories: str) -> List[Tuple[str, float]]:
|
| 140 |
+
cat_list = [c.strip() for c in categories.split('\n') if c.strip()]
|
| 141 |
+
text_embedding = embedder.get_embeddings([text])
|
| 142 |
+
cat_embeddings = embedder.get_embeddings(cat_list)
|
| 143 |
+
scores = (text_embedding @ cat_embeddings.T).squeeze(0)
|
| 144 |
+
results = [(cat, float(score)) for cat, score in zip(cat_list, scores)]
|
| 145 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
| 146 |
+
return [(cat, round(score, 3)) for cat, score in results]
|
| 147 |
+
|
| 148 |
+
def cluster_documents(embedder: QwenEmbedder, documents: str, num_clusters: int) -> pd.DataFrame:
|
| 149 |
+
from sklearn.cluster import KMeans
|
| 150 |
+
doc_list = [doc.strip() for doc in documents.split('\n') if doc.strip()]
|
| 151 |
+
if len(doc_list) < num_clusters:
|
| 152 |
+
return pd.DataFrame()
|
| 153 |
+
|
| 154 |
+
embeddings = embedder.get_embeddings(doc_list)
|
| 155 |
+
|
| 156 |
+
# Perform clustering
|
| 157 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
| 158 |
+
clusters = kmeans.fit_predict(embeddings.cpu().numpy())
|
| 159 |
+
|
| 160 |
+
# Calculate center document for each cluster
|
| 161 |
+
cluster_centers = kmeans.cluster_centers_
|
| 162 |
+
cluster_center_docs = []
|
| 163 |
+
|
| 164 |
+
for i in range(num_clusters):
|
| 165 |
+
cluster_docs = [doc for doc, cluster in zip(doc_list, clusters) if cluster == i]
|
| 166 |
+
cluster_embeddings = embedder.get_embeddings(cluster_docs)
|
| 167 |
+
center_embedding = torch.tensor(cluster_centers[i]).unsqueeze(0)
|
| 168 |
+
similarities = F.cosine_similarity(cluster_embeddings, center_embedding)
|
| 169 |
+
center_doc = cluster_docs[similarities.argmax().item()]
|
| 170 |
+
cluster_center_docs.append(center_doc)
|
| 171 |
+
|
| 172 |
+
# Create results DataFrame
|
| 173 |
+
df = pd.DataFrame({
|
| 174 |
+
'Document': doc_list,
|
| 175 |
+
'Cluster': clusters,
|
| 176 |
+
'Cluster Center Document': [cluster_center_docs[c] for c in clusters]
|
| 177 |
+
})
|
| 178 |
+
return df.sort_values('Cluster')
|
| 179 |
+
|
| 180 |
+
def analyze_sentiment(embedder: QwenEmbedder, text: str) -> Tuple[str, dict]:
|
| 181 |
+
# Define sentiment anchors
|
| 182 |
+
anchors = {
|
| 183 |
+
"very_positive": "هذا رائع جداً ومدهش! أنا سعيد للغاية",
|
| 184 |
+
"positive": "هذا جيد وممتع",
|
| 185 |
+
"neutral": "هذا عادي ومقبول",
|
| 186 |
+
"negative": "هذا سيء ومزعج",
|
| 187 |
+
"very_negative": "هذا فظيع جداً ومحبط للغاية"
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
# Get embeddings
|
| 191 |
+
text_embedding = embedder.get_embeddings([text])
|
| 192 |
+
anchor_embeddings = embedder.get_embeddings(list(anchors.values()))
|
| 193 |
+
|
| 194 |
+
# Calculate similarities
|
| 195 |
+
scores = (text_embedding @ anchor_embeddings.T).squeeze(0)
|
| 196 |
+
results = list(zip(anchors.keys(), scores.tolist()))
|
| 197 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
| 198 |
+
|
| 199 |
+
# Return tuple of (sentiment, scores_dict)
|
| 200 |
+
return (
|
| 201 |
+
results[0][0],
|
| 202 |
+
{k: round(float(v), 3) for k, v in results}
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
def extract_concepts(embedder: QwenEmbedder, text: str, concept_type: str) -> List[Tuple[str, float]]:
|
| 206 |
+
# Define concept anchors based on type
|
| 207 |
+
concept_anchors = {
|
| 208 |
+
"emotions": [
|
| 209 |
+
"الفرح والسعادة",
|
| 210 |
+
"الحزن والأسى",
|
| 211 |
+
"الغضب والإحباط",
|
| 212 |
+
"الخوف والقلق",
|
| 213 |
+
"الحب والعاطفة",
|
| 214 |
+
"الأمل والتفاؤل"
|
| 215 |
+
],
|
| 216 |
+
"topics": [
|
| 217 |
+
"السياسة والحكم",
|
| 218 |
+
"الاقتصاد والمال",
|
| 219 |
+
"العلوم والتكنولوجيا",
|
| 220 |
+
"الفن والثقافة",
|
| 221 |
+
"الرياضة والترفيه",
|
| 222 |
+
"التعليم والمعرفة"
|
| 223 |
+
],
|
| 224 |
+
"themes": [
|
| 225 |
+
"العدالة والمساواة",
|
| 226 |
+
"التقدم والتطور",
|
| 227 |
+
"التقاليد والتراث",
|
| 228 |
+
"الحرية والاستقلال",
|
| 229 |
+
"التعاون والوحدة",
|
| 230 |
+
"الإبداع والابتكار"
|
| 231 |
+
]
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
anchors = concept_anchors.get(concept_type, concept_anchors["topics"])
|
| 235 |
+
|
| 236 |
+
# Get embeddings
|
| 237 |
+
text_embedding = embedder.get_embeddings([text])
|
| 238 |
+
anchor_embeddings = embedder.get_embeddings(anchors)
|
| 239 |
+
|
| 240 |
+
# Calculate similarities
|
| 241 |
+
scores = (text_embedding @ anchor_embeddings.T).squeeze(0)
|
| 242 |
+
results = [(anchor, float(score)) for anchor, score in zip(anchors, scores)]
|
| 243 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
| 244 |
+
|
| 245 |
+
return [(concept, round(score, 3)) for concept, score in results]
|
| 246 |
+
|
| 247 |
+
# Add a function to reinitialize embedder with new dimension
|
| 248 |
+
def reinitialize_embedder(dim: int) -> QwenEmbedder:
|
| 249 |
+
global embedder
|
| 250 |
+
embedder = QwenEmbedder(embedding_dim=dim)
|
| 251 |
+
return "Embedder reinitialized with dimension: " + str(dim)
|
| 252 |
+
|
| 253 |
+
# Initialize the embedder with default dimension
|
| 254 |
+
embedder = QwenEmbedder()
|
| 255 |
+
|
| 256 |
+
# Update the CSS to improve feature visibility
|
| 257 |
+
custom_css = """
|
| 258 |
+
:root {
|
| 259 |
+
--primary-color: #2196F3;
|
| 260 |
+
--secondary-color: #1976D2;
|
| 261 |
+
--background-color: #f8f9fa;
|
| 262 |
+
--sidebar-bg: #ffffff;
|
| 263 |
+
--text-color: #333333;
|
| 264 |
+
--border-color: #e0e0e0;
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
.container {
|
| 268 |
+
max-width: 1200px;
|
| 269 |
+
margin: auto;
|
| 270 |
+
padding: 20px;
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
.sidebar {
|
| 274 |
+
background-color: var(--sidebar-bg);
|
| 275 |
+
border-right: 1px solid var(--border-color);
|
| 276 |
+
padding: 20px;
|
| 277 |
+
margin-right: 20px;
|
| 278 |
+
position: sticky;
|
| 279 |
+
top: 0;
|
| 280 |
+
height: 100vh;
|
| 281 |
+
overflow-y: auto;
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
.main-content {
|
| 285 |
+
background-color: var(--background-color);
|
| 286 |
+
padding: 20px;
|
| 287 |
+
border-radius: 10px;
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
.features-grid {
|
| 291 |
+
display: grid;
|
| 292 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 293 |
+
gap: 20px;
|
| 294 |
+
margin: 20px 0;
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
.feature-card {
|
| 298 |
+
background: white;
|
| 299 |
+
padding: 20px;
|
| 300 |
+
border-radius: 8px;
|
| 301 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 302 |
+
transition: all 0.3s ease;
|
| 303 |
+
border: 1px solid var(--border-color);
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
.feature-card:hover {
|
| 307 |
+
transform: translateY(-5px);
|
| 308 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
| 309 |
+
border-color: var(--primary-color);
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
.feature-icon {
|
| 313 |
+
font-size: 28px;
|
| 314 |
+
margin-bottom: 15px;
|
| 315 |
+
color: var(--primary-color);
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
.feature-card h3 {
|
| 319 |
+
color: var(--text-color);
|
| 320 |
+
margin: 10px 0;
|
| 321 |
+
font-size: 1.1em;
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
.feature-card p {
|
| 325 |
+
color: #666;
|
| 326 |
+
font-size: 0.9em;
|
| 327 |
+
line-height: 1.4;
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
.features-summary {
|
| 331 |
+
margin: 40px 0;
|
| 332 |
+
padding: 30px;
|
| 333 |
+
background: white;
|
| 334 |
+
border-radius: 12px;
|
| 335 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
.features-summary h2 {
|
| 339 |
+
color: var(--text-color);
|
| 340 |
+
margin-bottom: 25px;
|
| 341 |
+
text-align: center;
|
| 342 |
+
font-size: 1.5em;
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
.feature-list {
|
| 346 |
+
display: grid;
|
| 347 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 348 |
+
gap: 30px;
|
| 349 |
+
}
|
| 350 |
+
|
| 351 |
+
.feature-group {
|
| 352 |
+
padding: 20px;
|
| 353 |
+
background: var(--background-color);
|
| 354 |
+
border-radius: 8px;
|
| 355 |
+
border: 1px solid var(--border-color);
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
.feature-group h3 {
|
| 359 |
+
color: var(--primary-color);
|
| 360 |
+
margin-bottom: 15px;
|
| 361 |
+
font-size: 1.2em;
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
.feature-group ul {
|
| 365 |
+
list-style: none;
|
| 366 |
+
padding: 0;
|
| 367 |
+
margin: 0;
|
| 368 |
+
}
|
| 369 |
+
|
| 370 |
+
.feature-group li {
|
| 371 |
+
padding: 8px 0;
|
| 372 |
+
color: var(--text-color);
|
| 373 |
+
position: relative;
|
| 374 |
+
padding-left: 20px;
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
.feature-group li:before {
|
| 378 |
+
content: "•";
|
| 379 |
+
color: var(--primary-color);
|
| 380 |
+
position: absolute;
|
| 381 |
+
left: 0;
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
.description {
|
| 385 |
+
margin: 20px 0;
|
| 386 |
+
padding: 15px;
|
| 387 |
+
border-radius: 8px;
|
| 388 |
+
background-color: #ffffff;
|
| 389 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
.example {
|
| 393 |
+
margin: 10px 0;
|
| 394 |
+
padding: 15px;
|
| 395 |
+
border-left: 4px solid var(--primary-color);
|
| 396 |
+
background-color: #ffffff;
|
| 397 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
.warning {
|
| 401 |
+
color: #721c24;
|
| 402 |
+
background-color: #f8d7da;
|
| 403 |
+
border: 1px solid #f5c6cb;
|
| 404 |
+
padding: 15px;
|
| 405 |
+
border-radius: 8px;
|
| 406 |
+
margin: 10px 0;
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
.settings {
|
| 410 |
+
background-color: #ffffff;
|
| 411 |
+
padding: 20px;
|
| 412 |
+
border-radius: 8px;
|
| 413 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 414 |
+
margin: 20px 0;
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
.tab-content {
|
| 418 |
+
padding: 20px;
|
| 419 |
+
background-color: #ffffff;
|
| 420 |
+
border-radius: 8px;
|
| 421 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 422 |
+
}
|
| 423 |
+
|
| 424 |
+
.heading {
|
| 425 |
+
color: var(--text-color);
|
| 426 |
+
margin-bottom: 20px;
|
| 427 |
+
padding-bottom: 10px;
|
| 428 |
+
border-bottom: 2px solid var(--primary-color);
|
| 429 |
+
}
|
| 430 |
+
|
| 431 |
+
button.primary {
|
| 432 |
+
background-color: var(--primary-color) !important;
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
button.secondary {
|
| 436 |
+
background-color: var(--secondary-color) !important;
|
| 437 |
+
}
|
| 438 |
+
"""
|
| 439 |
+
|
| 440 |
+
# Create the Gradio interface
|
| 441 |
+
with gr.Blocks(title="Advanced Text Processing with Qwen", css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 442 |
+
# Store embedder in state
|
| 443 |
+
state = gr.State(embedder)
|
| 444 |
+
|
| 445 |
+
with gr.Row():
|
| 446 |
+
# Sidebar
|
| 447 |
+
with gr.Column(scale=1, elem_classes="sidebar"):
|
| 448 |
+
gr.Markdown("""
|
| 449 |
+
# Qwen Embeddings
|
| 450 |
+
|
| 451 |
+
### Navigation
|
| 452 |
+
- [Configuration](#configuration)
|
| 453 |
+
- [Features](#features)
|
| 454 |
+
- [Documentation](#documentation)
|
| 455 |
+
""")
|
| 456 |
+
|
| 457 |
+
with gr.Accordion("Configuration", open=True):
|
| 458 |
+
gr.Markdown("""
|
| 459 |
+
### Model Settings
|
| 460 |
+
Configure the embedding model parameters below.
|
| 461 |
+
""")
|
| 462 |
+
|
| 463 |
+
embedding_dim = gr.Slider(
|
| 464 |
+
minimum=32,
|
| 465 |
+
maximum=1024,
|
| 466 |
+
value=768,
|
| 467 |
+
step=32,
|
| 468 |
+
label="Embedding Dimension",
|
| 469 |
+
elem_classes="settings"
|
| 470 |
+
)
|
| 471 |
+
update_dim_btn = gr.Button("Update Dimension", variant="secondary")
|
| 472 |
+
dim_status = gr.Textbox(label="Status", interactive=False)
|
| 473 |
+
|
| 474 |
+
with gr.Accordion("Documentation", open=False):
|
| 475 |
+
gr.Markdown("""
|
| 476 |
+
### Usage Guide
|
| 477 |
+
|
| 478 |
+
1. **Embedding Dimension**
|
| 479 |
+
- 32-128: Fast, simple tasks
|
| 480 |
+
- 256-512: Balanced performance
|
| 481 |
+
- 768: Default, full model
|
| 482 |
+
- 1024: Maximum detail
|
| 483 |
+
|
| 484 |
+
2. **Best Practices**
|
| 485 |
+
- Use appropriate dimensions for your task
|
| 486 |
+
- Consider batch size for multiple documents
|
| 487 |
+
- Test different settings for optimal results
|
| 488 |
+
""")
|
| 489 |
+
|
| 490 |
+
# Main Content
|
| 491 |
+
with gr.Column(scale=4):
|
| 492 |
+
gr.Markdown("""
|
| 493 |
+
# Advanced Text Processing Suite
|
| 494 |
+
|
| 495 |
+
Welcome to the Advanced Text Processing Suite powered by Qwen Embeddings.
|
| 496 |
+
This tool provides state-of-the-art text analysis capabilities with support for Arabic and multiple languages.
|
| 497 |
+
""")
|
| 498 |
+
|
| 499 |
+
# Feature Grid
|
| 500 |
+
gr.HTML("""
|
| 501 |
+
<div class="features-grid">
|
| 502 |
+
<div class="feature-card">
|
| 503 |
+
<div class="feature-icon">🔄</div>
|
| 504 |
+
<h3>Text Similarity</h3>
|
| 505 |
+
<p>Compare semantic meaning between texts</p>
|
| 506 |
+
</div>
|
| 507 |
+
<div class="feature-card">
|
| 508 |
+
<div class="feature-icon">🔍</div>
|
| 509 |
+
<h3>Semantic Search</h3>
|
| 510 |
+
<p>Find relevant documents by meaning</p>
|
| 511 |
+
</div>
|
| 512 |
+
<div class="feature-card">
|
| 513 |
+
<div class="feature-icon">📊</div>
|
| 514 |
+
<h3>Batch Analysis</h3>
|
| 515 |
+
<p>Process multiple texts simultaneously</p>
|
| 516 |
+
</div>
|
| 517 |
+
<div class="feature-card">
|
| 518 |
+
<div class="feature-icon">🎯</div>
|
| 519 |
+
<h3>Multi-Query Retrieval</h3>
|
| 520 |
+
<p>Match queries with relevant documents</p>
|
| 521 |
+
</div>
|
| 522 |
+
<div class="feature-card">
|
| 523 |
+
<div class="feature-icon">🌐</div>
|
| 524 |
+
<h3>Cross-Lingual</h3>
|
| 525 |
+
<p>Match meaning across languages</p>
|
| 526 |
+
</div>
|
| 527 |
+
<div class="feature-card">
|
| 528 |
+
<div class="feature-icon">🏷️</div>
|
| 529 |
+
<h3>Text Classification</h3>
|
| 530 |
+
<p>Categorize text into predefined classes</p>
|
| 531 |
+
</div>
|
| 532 |
+
<div class="feature-card">
|
| 533 |
+
<div class="feature-icon">🔮</div>
|
| 534 |
+
<h3>Document Clustering</h3>
|
| 535 |
+
<p>Group similar documents together</p>
|
| 536 |
+
</div>
|
| 537 |
+
<div class="feature-card">
|
| 538 |
+
<div class="feature-icon">😊</div>
|
| 539 |
+
<h3>Sentiment Analysis</h3>
|
| 540 |
+
<p>Analyze emotional content in text</p>
|
| 541 |
+
</div>
|
| 542 |
+
<div class="feature-card">
|
| 543 |
+
<div class="feature-icon">🎨</div>
|
| 544 |
+
<h3>Concept Extraction</h3>
|
| 545 |
+
<p>Identify key themes and topics</p>
|
| 546 |
+
</div>
|
| 547 |
+
</div>
|
| 548 |
+
|
| 549 |
+
<div class="features-summary">
|
| 550 |
+
<h2>Advanced Features</h2>
|
| 551 |
+
<div class="feature-list">
|
| 552 |
+
<div class="feature-group">
|
| 553 |
+
<h3>Text Analysis</h3>
|
| 554 |
+
<ul>
|
| 555 |
+
<li>Semantic similarity scoring</li>
|
| 556 |
+
<li>Cross-language understanding</li>
|
| 557 |
+
<li>Batch text processing</li>
|
| 558 |
+
<li>Emotion detection</li>
|
| 559 |
+
</ul>
|
| 560 |
+
</div>
|
| 561 |
+
<div class="feature-group">
|
| 562 |
+
<h3>Document Processing</h3>
|
| 563 |
+
<ul>
|
| 564 |
+
<li>Smart document search</li>
|
| 565 |
+
<li>Automated clustering</li>
|
| 566 |
+
<li>Theme extraction</li>
|
| 567 |
+
<li>Content categorization</li>
|
| 568 |
+
</ul>
|
| 569 |
+
</div>
|
| 570 |
+
<div class="feature-group">
|
| 571 |
+
<h3>Model Configuration</h3>
|
| 572 |
+
<ul>
|
| 573 |
+
<li>Adjustable embedding dimensions</li>
|
| 574 |
+
<li>GPU acceleration support</li>
|
| 575 |
+
<li>Batch size optimization</li>
|
| 576 |
+
<li>Multi-language support</li>
|
| 577 |
+
</ul>
|
| 578 |
+
</div>
|
| 579 |
+
</div>
|
| 580 |
+
</div>
|
| 581 |
+
""")
|
| 582 |
+
|
| 583 |
+
with gr.Tabs() as tabs:
|
| 584 |
+
# Text Similarity Tab
|
| 585 |
+
with gr.Tab("Text Similarity Analysis"):
|
| 586 |
+
with gr.Column(elem_classes="tab-content"):
|
| 587 |
+
gr.Markdown("""
|
| 588 |
+
### Text Similarity Analysis
|
| 589 |
+
Compare the semantic similarity between two texts. The score ranges from 0 (completely different) to 1 (identical meaning).
|
| 590 |
+
|
| 591 |
+
<div class="example">
|
| 592 |
+
<strong>Try these Arabic examples:</strong><br>
|
| 593 |
+
• "أحب القراءة كثيراً" and "القراءة من أحب هواياتي"<br>
|
| 594 |
+
• "السماء صافية اليوم" and "الطقس حار جداً"
|
| 595 |
+
</div>
|
| 596 |
+
""")
|
| 597 |
+
|
| 598 |
+
with gr.Row():
|
| 599 |
+
text1 = gr.Textbox(
|
| 600 |
+
label="First Text",
|
| 601 |
+
lines=3,
|
| 602 |
+
placeholder="Enter first text here...",
|
| 603 |
+
value="أحب القراءة كثيراً"
|
| 604 |
+
)
|
| 605 |
+
text2 = gr.Textbox(
|
| 606 |
+
label="Second Text",
|
| 607 |
+
lines=3,
|
| 608 |
+
placeholder="Enter second text here...",
|
| 609 |
+
value="القراءة من أحب هواياتي"
|
| 610 |
+
)
|
| 611 |
+
similarity_btn = gr.Button("Calculate Similarity", variant="primary")
|
| 612 |
+
similarity_score = gr.Number(label="Similarity Score")
|
| 613 |
+
|
| 614 |
+
similarity_btn.click(
|
| 615 |
+
fn=lambda t1, t2, s: compute_similarity(s.value, t1, t2),
|
| 616 |
+
inputs=[text1, text2, state],
|
| 617 |
+
outputs=similarity_score
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
# Document Reranking Tab
|
| 621 |
+
with gr.Tab("Semantic Search & Reranking"):
|
| 622 |
+
with gr.Column(elem_classes="tab-content"):
|
| 623 |
+
gr.Markdown("""
|
| 624 |
+
### Semantic Search & Document Reranking
|
| 625 |
+
Search through a collection of documents and rank them by semantic relevance to your query.
|
| 626 |
+
|
| 627 |
+
<div class="example">
|
| 628 |
+
<strong>Try these Arabic queries:</strong><br>
|
| 629 |
+
• "ما هي عواصم الدول العربية؟"<br>
|
| 630 |
+
• "أين تقع أكبر المدن العربية؟"<br>
|
| 631 |
+
• "ما هي المراكز الثقافية العربية؟"
|
| 632 |
+
</div>
|
| 633 |
+
""")
|
| 634 |
+
|
| 635 |
+
query_text = gr.Textbox(
|
| 636 |
+
label="Search Query",
|
| 637 |
+
placeholder="Enter your search query...",
|
| 638 |
+
value="ما هي عواصم الدول العربية؟"
|
| 639 |
+
)
|
| 640 |
+
documents_text = gr.Textbox(
|
| 641 |
+
label="Documents Collection (one per line)",
|
| 642 |
+
lines=10,
|
| 643 |
+
placeholder="Enter documents here, one per line...",
|
| 644 |
+
value="""القاهرة هي عاصمة جمهورية مصر العربية وأكبر مدنها.
|
| 645 |
+
الرياض هي عاصمة المملكة العربية السعودية ومركزها الاقتصادي.
|
| 646 |
+
دمشق هي أقدم عاصمة مأهولة في التاريخ وهي عاصمة سوريا.
|
| 647 |
+
بغداد عاصمة العراق وتقع على نهر دجلة.
|
| 648 |
+
الدار البيضاء أكبر مدن المغرب وعاصمته الاقتصادية.
|
| 649 |
+
تونس هي عاصمة الجمهورية التونسية ومركزها الثقافي."""
|
| 650 |
+
)
|
| 651 |
+
rerank_btn = gr.Button("Search & Rank", variant="primary")
|
| 652 |
+
rerank_results = gr.Dataframe(
|
| 653 |
+
headers=["Document", "Relevance Score"],
|
| 654 |
+
label="Search Results"
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
rerank_btn.click(
|
| 658 |
+
fn=lambda q, d, s: rerank_documents(s.value, q, d),
|
| 659 |
+
inputs=[query_text, documents_text, state],
|
| 660 |
+
outputs=rerank_results
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
# Batch Analysis Tab
|
| 664 |
+
with gr.Tab("Batch Similarity Analysis"):
|
| 665 |
+
with gr.Column(elem_classes="tab-content"):
|
| 666 |
+
gr.Markdown("""
|
| 667 |
+
### Batch Similarity Analysis
|
| 668 |
+
Analyze semantic relationships between multiple texts simultaneously.
|
| 669 |
+
|
| 670 |
+
<div class="example">
|
| 671 |
+
<strong>The example shows Arabic proverbs about friendship:</strong><br>
|
| 672 |
+
See how the model captures the semantic relationships between similar themes.
|
| 673 |
+
</div>
|
| 674 |
+
""")
|
| 675 |
+
|
| 676 |
+
batch_texts = gr.Textbox(
|
| 677 |
+
label="Input Texts (one per line)",
|
| 678 |
+
lines=10,
|
| 679 |
+
placeholder="Enter texts here, one per line...",
|
| 680 |
+
value="""الصديق وقت الضيق.
|
| 681 |
+
الصديق الحقيقي يظهر عند الشدائد.
|
| 682 |
+
عند المحن تعرف إخوانك.
|
| 683 |
+
وقت الشدة بتعرف صحابك.
|
| 684 |
+
الصاحب ساحب."""
|
| 685 |
+
)
|
| 686 |
+
process_btn = gr.Button("Analyze Relationships", variant="primary")
|
| 687 |
+
similarity_matrix = gr.Dataframe(
|
| 688 |
+
label="Similarity Matrix",
|
| 689 |
+
wrap=True
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
process_btn.click(
|
| 693 |
+
fn=lambda t, s: process_batch_embeddings(s.value, t),
|
| 694 |
+
inputs=[batch_texts, state],
|
| 695 |
+
outputs=[similarity_matrix]
|
| 696 |
+
)
|
| 697 |
+
|
| 698 |
+
# Add new Retrieval Tab
|
| 699 |
+
with gr.Tab("Multi-Query Retrieval"):
|
| 700 |
+
with gr.Column(elem_classes="tab-content"):
|
| 701 |
+
gr.Markdown("""
|
| 702 |
+
### Multi-Query Document Retrieval
|
| 703 |
+
Match multiple queries against multiple documents simultaneously using semantic search.
|
| 704 |
+
|
| 705 |
+
<div class="description">
|
| 706 |
+
This tab implements the exact retrieval logic from the Qwen example, allowing you to:
|
| 707 |
+
- Define a custom task prompt
|
| 708 |
+
- Input multiple queries
|
| 709 |
+
- Input multiple documents
|
| 710 |
+
- See all query-document match scores in a matrix
|
| 711 |
+
</div>
|
| 712 |
+
|
| 713 |
+
<div class="example">
|
| 714 |
+
<strong>Try these examples:</strong><br>
|
| 715 |
+
<strong>Task prompt:</strong> "Given a web search query, retrieve relevant passages that answer the query"<br>
|
| 716 |
+
<strong>Queries:</strong>
|
| 717 |
+
• "ما هي أكبر المدن العربية؟"
|
| 718 |
+
• "أين تقع أهم المراكز الثقافية؟"<br>
|
| 719 |
+
<strong>Documents:</strong> Use the example documents or add your own
|
| 720 |
+
</div>
|
| 721 |
+
""")
|
| 722 |
+
|
| 723 |
+
task_prompt = gr.Textbox(
|
| 724 |
+
label="Task Prompt",
|
| 725 |
+
placeholder="Enter the task description here...",
|
| 726 |
+
value="Given a web search query, retrieve relevant passages that answer the query",
|
| 727 |
+
lines=2
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
with gr.Row():
|
| 731 |
+
queries_text = gr.Textbox(
|
| 732 |
+
label="Queries (one per line)",
|
| 733 |
+
placeholder="Enter your queries here, one per line...",
|
| 734 |
+
value="""ما هي أكبر المدن العربية؟
|
| 735 |
+
أين تقع أهم المراكز الثقافية؟""",
|
| 736 |
+
lines=5
|
| 737 |
+
)
|
| 738 |
+
documents_text = gr.Textbox(
|
| 739 |
+
label="Documents (one per line)",
|
| 740 |
+
placeholder="Enter your documents here, one per line...",
|
| 741 |
+
value="""القاهرة هي أكبر مدينة عربية وعاصمة مصر، وتضم العديد من المعالم الثقافية والتاريخية.
|
| 742 |
+
الرياض عاصمة المملكة العربية السعودية ومركز ثقافي واقتصادي مهم.
|
| 743 |
+
دبي مدينة عالمية في الإمارات العربية المتحدة ومركز تجاري رئيسي.
|
| 744 |
+
بيروت عاصمة لبنان ومركز ثقافي مهم في العالم العربي.""",
|
| 745 |
+
lines=5
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
retrieve_btn = gr.Button("Process Retrieval", variant="primary")
|
| 749 |
+
retrieval_matrix = gr.Dataframe(
|
| 750 |
+
label="Query-Document Relevance Matrix",
|
| 751 |
+
wrap=True
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
gr.Markdown("""
|
| 755 |
+
<div class="description">
|
| 756 |
+
<strong>How to read the results:</strong>
|
| 757 |
+
- Each row represents a query
|
| 758 |
+
- Each column represents a document
|
| 759 |
+
- Values show the relevance score (0-1) between each query-document pair
|
| 760 |
+
- Higher scores indicate better matches
|
| 761 |
+
</div>
|
| 762 |
+
""")
|
| 763 |
+
|
| 764 |
+
retrieve_btn.click(
|
| 765 |
+
fn=lambda p, q, d, s: process_retrieval(s.value, p, q, d),
|
| 766 |
+
inputs=[task_prompt, queries_text, documents_text, state],
|
| 767 |
+
outputs=[retrieval_matrix]
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
# Add Cross-Lingual Tab after the Multi-Query Retrieval tab
|
| 771 |
+
with gr.Tab("Cross-Lingual Matching"):
|
| 772 |
+
with gr.Column(elem_classes="tab-content"):
|
| 773 |
+
gr.Markdown("""
|
| 774 |
+
### Cross-Lingual Semantic Matching
|
| 775 |
+
Compare the meaning of texts across Arabic and English languages.
|
| 776 |
+
|
| 777 |
+
<div class="description">
|
| 778 |
+
This feature demonstrates the model's ability to understand semantic similarity across different languages.
|
| 779 |
+
Try comparing similar concepts expressed in Arabic and English to see how well the model captures cross-lingual meaning.
|
| 780 |
+
</div>
|
| 781 |
+
|
| 782 |
+
<div class="example">
|
| 783 |
+
<strong>Try these examples:</strong><br>
|
| 784 |
+
<strong>Arabic:</strong> "القراءة غذاء العقل والروح"<br>
|
| 785 |
+
<strong>English:</strong> "Reading nourishes the mind and soul"<br>
|
| 786 |
+
Or try your own pairs of semantically similar texts in both languages.
|
| 787 |
+
</div>
|
| 788 |
+
""")
|
| 789 |
+
|
| 790 |
+
with gr.Row():
|
| 791 |
+
arabic_text = gr.Textbox(
|
| 792 |
+
label="Arabic Text",
|
| 793 |
+
placeholder="Enter Arabic text here...",
|
| 794 |
+
value="القراءة غذاء العقل والروح",
|
| 795 |
+
lines=3
|
| 796 |
+
)
|
| 797 |
+
english_text = gr.Textbox(
|
| 798 |
+
label="English Text",
|
| 799 |
+
placeholder="Enter English text here...",
|
| 800 |
+
value="Reading nourishes the mind and soul",
|
| 801 |
+
lines=3
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
match_btn = gr.Button("Compare Texts", variant="primary")
|
| 805 |
+
with gr.Row():
|
| 806 |
+
cross_lingual_score = gr.Number(
|
| 807 |
+
label="Cross-Lingual Similarity Score",
|
| 808 |
+
value=None
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
gr.Markdown("""
|
| 812 |
+
<div class="description">
|
| 813 |
+
<strong>Understanding the score:</strong>
|
| 814 |
+
- Score ranges from 0 (completely different meaning) to 1 (same meaning)
|
| 815 |
+
- Scores above 0.7 usually indicate strong semantic similarity
|
| 816 |
+
- The model considers the meaning, not just word-for-word translation
|
| 817 |
+
</div>
|
| 818 |
+
""")
|
| 819 |
+
|
| 820 |
+
match_btn.click(
|
| 821 |
+
fn=lambda a, e, s: process_cross_lingual(s.value, a, e)["similarity"],
|
| 822 |
+
inputs=[arabic_text, english_text, state],
|
| 823 |
+
outputs=[cross_lingual_score]
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
# Add Text Classification Tab
|
| 827 |
+
with gr.Tab("Text Classification"):
|
| 828 |
+
with gr.Column(elem_classes="tab-content"):
|
| 829 |
+
gr.Markdown("""
|
| 830 |
+
### Text Classification
|
| 831 |
+
Classify text into predefined categories using semantic similarity.
|
| 832 |
+
|
| 833 |
+
<div class="description">
|
| 834 |
+
The model will compare your text against each category and rank them by relevance.
|
| 835 |
+
You can define your own categories or use the provided examples.
|
| 836 |
+
</div>
|
| 837 |
+
""")
|
| 838 |
+
|
| 839 |
+
input_text = gr.Textbox(
|
| 840 |
+
label="Input Text",
|
| 841 |
+
placeholder="Enter the text to classify...",
|
| 842 |
+
value="الذكاء الاصطناعي يغير طريقة عملنا وتفكيرنا في المستقبل",
|
| 843 |
+
lines=3
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
categories_text = gr.Textbox(
|
| 847 |
+
label="Categories (one per line)",
|
| 848 |
+
placeholder="Enter categories here...",
|
| 849 |
+
value="""التكنولوجيا والابتكار
|
| 850 |
+
الاقتصاد والأعمال
|
| 851 |
+
التعليم والتدريب
|
| 852 |
+
الثقافة والفنون
|
| 853 |
+
الصحة والطب""",
|
| 854 |
+
lines=5
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
classify_btn = gr.Button("Classify Text", variant="primary")
|
| 858 |
+
classification_results = gr.Dataframe(
|
| 859 |
+
headers=["Category", "Relevance Score"],
|
| 860 |
+
label="Classification Results"
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
classify_btn.click(
|
| 864 |
+
fn=lambda t, c, s: classify_text(s.value, t, c),
|
| 865 |
+
inputs=[input_text, categories_text, state],
|
| 866 |
+
outputs=classification_results
|
| 867 |
+
)
|
| 868 |
+
|
| 869 |
+
# Add Document Clustering Tab
|
| 870 |
+
with gr.Tab("Document Clustering"):
|
| 871 |
+
with gr.Column(elem_classes="tab-content"):
|
| 872 |
+
gr.Markdown("""
|
| 873 |
+
### Document Clustering
|
| 874 |
+
Group similar documents together using semantic clustering.
|
| 875 |
+
|
| 876 |
+
<div class="description">
|
| 877 |
+
This feature will:
|
| 878 |
+
- Group similar documents into clusters
|
| 879 |
+
- Identify the most representative document for each cluster
|
| 880 |
+
- Help discover themes and patterns in your document collection
|
| 881 |
+
</div>
|
| 882 |
+
""")
|
| 883 |
+
|
| 884 |
+
cluster_docs = gr.Textbox(
|
| 885 |
+
label="Documents (one per line)",
|
| 886 |
+
placeholder="Enter documents to cluster...",
|
| 887 |
+
value="""الذكاء الاصطناعي يفتح آفاقاً جديدة في مجال الطب.
|
| 888 |
+
الروبوتات تساعد الأطباء في إجراء العمليات الجراحية.
|
| 889 |
+
التعلم الآلي يحسن من دقة التشخيص الطبي.
|
| 890 |
+
الفن يعبر عن مشاعر الإنسان وأحاسيسه.
|
| 891 |
+
الموسيقى لغة عالمية تتخطى حدود الثقافات.
|
| 892 |
+
الرسم والنحت من أقدم أشكال التعبير الفني.
|
| 893 |
+
التجارة الإلكترونية تغير نمط التسوق التقليدي.
|
| 894 |
+
التسوق عبر الإنترنت يوفر الوقت والجهد.
|
| 895 |
+
المتاجر الرقمية تتيح خيارات أوسع للمستهلكين.""",
|
| 896 |
+
lines=10
|
| 897 |
+
)
|
| 898 |
+
|
| 899 |
+
num_clusters = gr.Slider(
|
| 900 |
+
minimum=2,
|
| 901 |
+
maximum=10,
|
| 902 |
+
value=3,
|
| 903 |
+
step=1,
|
| 904 |
+
label="Number of Clusters"
|
| 905 |
+
)
|
| 906 |
+
|
| 907 |
+
cluster_btn = gr.Button("Cluster Documents", variant="primary")
|
| 908 |
+
clustering_results = gr.Dataframe(
|
| 909 |
+
label="Clustering Results"
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
cluster_btn.click(
|
| 913 |
+
fn=lambda d, n, s: cluster_documents(s.value, d, n),
|
| 914 |
+
inputs=[cluster_docs, num_clusters, state],
|
| 915 |
+
outputs=clustering_results
|
| 916 |
+
)
|
| 917 |
+
|
| 918 |
+
# Add Sentiment Analysis Tab
|
| 919 |
+
with gr.Tab("Sentiment Analysis"):
|
| 920 |
+
with gr.Column(elem_classes="tab-content"):
|
| 921 |
+
gr.Markdown("""
|
| 922 |
+
### Arabic Sentiment Analysis
|
| 923 |
+
Analyze the sentiment of Arabic text using semantic similarity to sentiment anchors.
|
| 924 |
+
|
| 925 |
+
<div class="description">
|
| 926 |
+
The model will compare your text against predefined sentiment anchors and determine:
|
| 927 |
+
- The overall sentiment
|
| 928 |
+
- Confidence scores for each sentiment level
|
| 929 |
+
</div>
|
| 930 |
+
""")
|
| 931 |
+
|
| 932 |
+
sentiment_text = gr.Textbox(
|
| 933 |
+
label="Text to Analyze",
|
| 934 |
+
placeholder="Enter text to analyze sentiment...",
|
| 935 |
+
value="هذا المشروع رائع جداً وسيحدث تغييراً إيجابياً في حياة الكثيرين",
|
| 936 |
+
lines=3
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
analyze_btn = gr.Button("Analyze Sentiment", variant="primary")
|
| 940 |
+
|
| 941 |
+
with gr.Row():
|
| 942 |
+
sentiment_label = gr.Label(label="Overall Sentiment")
|
| 943 |
+
sentiment_scores = gr.Json(label="Detailed Scores")
|
| 944 |
+
|
| 945 |
+
analyze_btn.click(
|
| 946 |
+
fn=lambda t, s: analyze_sentiment(s.value, t),
|
| 947 |
+
inputs=[sentiment_text, state],
|
| 948 |
+
outputs=[sentiment_label, sentiment_scores]
|
| 949 |
+
)
|
| 950 |
+
|
| 951 |
+
# Add Concept Extraction Tab
|
| 952 |
+
with gr.Tab("Concept Extraction"):
|
| 953 |
+
with gr.Column(elem_classes="tab-content"):
|
| 954 |
+
gr.Markdown("""
|
| 955 |
+
### Concept Extraction
|
| 956 |
+
Extract key concepts and themes from Arabic text.
|
| 957 |
+
|
| 958 |
+
<div class="description">
|
| 959 |
+
Analyze text to identify:
|
| 960 |
+
- Emotional content
|
| 961 |
+
- Main topics
|
| 962 |
+
- Underlying themes
|
| 963 |
+
</div>
|
| 964 |
+
""")
|
| 965 |
+
|
| 966 |
+
concept_text = gr.Textbox(
|
| 967 |
+
label="Text to Analyze",
|
| 968 |
+
placeholder="Enter text to analyze...",
|
| 969 |
+
value="نحن نؤمن بأهمية التعليم والابتكار لبناء مستقبل أفضل لأجيالنا القادمة",
|
| 970 |
+
lines=3
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
concept_type = gr.Radio(
|
| 974 |
+
choices=["emotions", "topics", "themes"],
|
| 975 |
+
value="themes",
|
| 976 |
+
label="Concept Type"
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
extract_btn = gr.Button("Extract Concepts", variant="primary")
|
| 980 |
+
concept_results = gr.Dataframe(
|
| 981 |
+
headers=["Concept", "Relevance Score"],
|
| 982 |
+
label="Extracted Concepts"
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
extract_btn.click(
|
| 986 |
+
fn=lambda t, c, s: extract_concepts(s.value, t, c),
|
| 987 |
+
inputs=[concept_text, concept_type, state],
|
| 988 |
+
outputs=concept_results
|
| 989 |
+
)
|
| 990 |
+
|
| 991 |
+
# Fix dimension update functionality
|
| 992 |
+
def update_embedder_dim(dim, state):
|
| 993 |
+
try:
|
| 994 |
+
new_embedder = QwenEmbedder(embedding_dim=dim)
|
| 995 |
+
state.value = new_embedder
|
| 996 |
+
return state, f"Successfully updated embedding dimension to {dim}"
|
| 997 |
+
except Exception as e:
|
| 998 |
+
return state, f"Error updating dimension: {str(e)}"
|
| 999 |
+
|
| 1000 |
+
update_dim_btn.click(
|
| 1001 |
+
fn=update_embedder_dim,
|
| 1002 |
+
inputs=[embedding_dim, state],
|
| 1003 |
+
outputs=[state, dim_status]
|
| 1004 |
+
)
|
| 1005 |
+
|
| 1006 |
+
# Wrap the demo creation in the spaces decorator
|
| 1007 |
+
@spaces.GPU(duration=120)
|
| 1008 |
+
def create_demo():
|
| 1009 |
+
# ... rest of your existing demo code ...
|
| 1010 |
+
return demo
|
| 1011 |
+
|
| 1012 |
+
if __name__ == "__main__":
|
| 1013 |
+
demo = create_demo()
|
| 1014 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
numpy>=1.21.0
|
| 3 |
+
requests>=2.26.0
|
| 4 |
+
scipy>=1.7.0
|
| 5 |
+
sentence-transformers>=2.2.0
|
| 6 |
+
torch>=2.0.0
|
| 7 |
+
scikit-learn>=1.0.0
|
| 8 |
+
transformers>=4.51.0
|
| 9 |
+
plotly>=5.18.0
|
| 10 |
+
pandas>=2.0.0
|