update submit
Browse files- src/submission/submit.py +250 -56
src/submission/submit.py
CHANGED
|
@@ -1,8 +1,17 @@
|
|
| 1 |
-
import json
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
import random
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
|
@@ -10,6 +19,9 @@ from datasets import load_dataset
|
|
| 10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 14 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
|
| 15 |
from src.submission.check_validity import (
|
|
@@ -19,11 +31,20 @@ from src.submission.check_validity import (
|
|
| 19 |
is_model_on_hub,
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
import spaces
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
REQUESTED_MODELS = None
|
| 25 |
USERS_TO_SUBMISSION_DATES = None
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
# List of subjects to exclude from evaluation
|
| 28 |
excluded_subjects = [
|
| 29 |
"human_sexuality",
|
|
@@ -35,8 +56,11 @@ excluded_subjects = [
|
|
| 35 |
"world_religions"
|
| 36 |
]
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
if torch.cuda.is_available():
|
| 41 |
model = model.cuda()
|
| 42 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
|
@@ -44,48 +68,93 @@ def get_top_prediction(text, tokenizer, model):
|
|
| 44 |
model = model.cpu()
|
| 45 |
inputs = {k: v.cpu() for k, v in inputs.items()}
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
with torch.no_grad():
|
| 48 |
outputs = model(**inputs)
|
| 49 |
-
logits = outputs.logits[
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
options = [' A', ' B', ' C', ' D']
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
else:
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
if not option_logits:
|
| 64 |
-
return "No valid options"
|
| 65 |
|
| 66 |
-
top_option = max(option_logits, key=lambda x: x[0])[1]
|
| 67 |
-
return top_option
|
| 68 |
|
| 69 |
@spaces.GPU(duration=120)
|
| 70 |
-
def evaluate_model_accuracy_by_subject(model_name, num_questions_per_subject=100):
|
| 71 |
try:
|
|
|
|
| 72 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 73 |
tokenizer.pad_token = tokenizer.eos_token
|
| 74 |
|
|
|
|
|
|
|
|
|
|
| 75 |
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
model_name,
|
| 77 |
trust_remote_code=True
|
| 78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
if torch.cuda.is_available():
|
| 80 |
model = model.cuda() # Move model to GPU if available
|
| 81 |
else:
|
| 82 |
model = model.cpu()
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
| 85 |
dataset = dataset['test']
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
dataset = dataset.filter(lambda x: x['Subject'] not in excluded_subjects)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
| 90 |
Question: {Question}
|
| 91 |
A) {A}
|
|
@@ -94,20 +163,30 @@ C) {C}
|
|
| 94 |
D) {D}
|
| 95 |
Answer:"""
|
| 96 |
|
|
|
|
|
|
|
|
|
|
| 97 |
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
subject_results = {}
|
| 100 |
overall_correct_predictions = 0
|
| 101 |
overall_total_questions = 0
|
| 102 |
|
| 103 |
-
subjects = dataset.unique('Subject')
|
| 104 |
|
| 105 |
-
# To track best performance per subject
|
| 106 |
-
best_in_class = {subject: {"model_name": None, "accuracy": 0} for subject in subjects}
|
| 107 |
|
|
|
|
|
|
|
| 108 |
for subject in subjects:
|
| 109 |
subject_data = dataset.filter(lambda x: x['Subject'] == subject)
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
if num_questions_per_subject > 0:
|
| 112 |
if len(subject_data) < num_questions_per_subject:
|
| 113 |
print(f"Warning: Not enough questions for subject '{subject}'. Using all available questions.")
|
|
@@ -116,40 +195,74 @@ Answer:"""
|
|
| 116 |
selected_indices = random.sample(range(len(subject_data)), num_questions_per_subject)
|
| 117 |
subject_data = subject_data.select(selected_indices)
|
| 118 |
|
|
|
|
|
|
|
|
|
|
| 119 |
correct_predictions = 0
|
| 120 |
total_questions = 0
|
| 121 |
results = []
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
| 147 |
|
| 148 |
-
# Check if this model is the best for the current subject
|
| 149 |
-
if accuracy > best_in_class[subject]['accuracy']:
|
| 150 |
-
best_in_class[subject]['model_name'] = model_name
|
| 151 |
-
best_in_class[subject]['accuracy'] = accuracy
|
| 152 |
|
|
|
|
|
|
|
|
|
|
| 153 |
subject_results[subject] = {
|
| 154 |
'Correct Predictions': correct_predictions,
|
| 155 |
'Total Questions': total_questions,
|
|
@@ -157,20 +270,27 @@ Answer:"""
|
|
| 157 |
'Results DataFrame': pd.DataFrame(results)
|
| 158 |
}
|
| 159 |
|
|
|
|
|
|
|
|
|
|
| 160 |
overall_accuracy = (overall_correct_predictions / overall_total_questions) * 100 if overall_total_questions > 0 else 0
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
except Exception as e:
|
| 165 |
import traceback
|
| 166 |
tb = traceback.format_exc()
|
| 167 |
print(f"Error in evaluate_model_accuracy_by_subject: {e}\n{tb}")
|
| 168 |
-
return f"Error: {str(e)}", {}
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
def display_best_in_class(best_in_class):
|
| 171 |
-
print("\nBest Model in Each Subject:\n")
|
| 172 |
-
for subject, info in best_in_class.items():
|
| 173 |
-
print(f"{subject}: {info['model_name']} with accuracy: {info['accuracy'] * 100:.2f}%")
|
| 174 |
|
| 175 |
def add_new_eval(
|
| 176 |
model: str,
|
|
@@ -185,41 +305,101 @@ def add_new_eval(
|
|
| 185 |
if not REQUESTED_MODELS:
|
| 186 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 187 |
|
|
|
|
|
|
|
|
|
|
| 188 |
user_name = ""
|
| 189 |
model_path = model
|
| 190 |
if "/" in model:
|
| 191 |
user_name = model.split("/")[0]
|
| 192 |
model_path = model.split("/")[1]
|
| 193 |
|
|
|
|
|
|
|
|
|
|
| 194 |
precision = precision.split(" ")[0]
|
| 195 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 196 |
|
|
|
|
|
|
|
|
|
|
| 197 |
if model_type is None or model_type == "":
|
| 198 |
return styled_error("Please select a model type.")
|
| 199 |
|
|
|
|
|
|
|
|
|
|
| 200 |
# Does the model actually exist?
|
| 201 |
if revision == "":
|
| 202 |
revision = "main"
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
if weight_type in ["Delta", "Adapter"]:
|
| 205 |
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 206 |
if not base_model_on_hub:
|
| 207 |
return styled_error(f'Base model "{base_model}" {error}')
|
| 208 |
|
|
|
|
|
|
|
|
|
|
| 209 |
if not weight_type == "Adapter":
|
| 210 |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 211 |
if not model_on_hub:
|
| 212 |
return styled_error(f'Model "{model}" {error}')
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
try:
|
| 215 |
-
overall_accuracy, subject_results
|
| 216 |
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
| 217 |
return styled_error(overall_accuracy)
|
| 218 |
except Exception as e:
|
| 219 |
return styled_error(f"An error occurred during evaluation: {str(e)}")
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
# Prepare results for storage
|
| 225 |
results_dict = {
|
|
@@ -231,22 +411,35 @@ def add_new_eval(
|
|
| 231 |
"weight_type": weight_type,
|
| 232 |
"model_type": model_type,
|
| 233 |
"submitted_time": current_time,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
},
|
| 235 |
"results": {
|
| 236 |
"average": overall_accuracy,
|
| 237 |
},
|
| 238 |
}
|
| 239 |
|
|
|
|
|
|
|
|
|
|
| 240 |
# Include per-subject accuracies
|
| 241 |
for subject, data in subject_results.items():
|
| 242 |
accuracy = data['Accuracy']
|
| 243 |
results_dict['results'][subject] = accuracy
|
| 244 |
|
|
|
|
|
|
|
|
|
|
| 245 |
# Save results to a JSON file
|
| 246 |
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|
| 247 |
with open(results_file_path, "w") as f:
|
| 248 |
json.dump(results_dict, f, indent=4)
|
| 249 |
|
|
|
|
|
|
|
|
|
|
| 250 |
# Upload the results file
|
| 251 |
API.upload_file(
|
| 252 |
path_or_fileobj=results_file_path,
|
|
@@ -256,6 +449,7 @@ def add_new_eval(
|
|
| 256 |
commit_message=f"Add results for {model}"
|
| 257 |
)
|
| 258 |
|
|
|
|
| 259 |
os.remove(results_file_path)
|
| 260 |
|
| 261 |
return styled_message("Your model has been evaluated and the results are now on the leaderboard!")
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
# Set environment variable for better memory management
|
| 5 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import json
|
| 9 |
from datetime import datetime, timezone
|
| 10 |
import random
|
| 11 |
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
import torch
|
| 16 |
import pandas as pd
|
| 17 |
import numpy as np
|
|
|
|
| 19 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 20 |
from langchain.prompts import PromptTemplate
|
| 21 |
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 26 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
|
| 27 |
from src.submission.check_validity import (
|
|
|
|
| 31 |
is_model_on_hub,
|
| 32 |
)
|
| 33 |
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
import spaces
|
| 38 |
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
REQUESTED_MODELS = None
|
| 43 |
USERS_TO_SUBMISSION_DATES = None
|
| 44 |
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
# List of subjects to exclude from evaluation
|
| 49 |
excluded_subjects = [
|
| 50 |
"human_sexuality",
|
|
|
|
| 56 |
"world_religions"
|
| 57 |
]
|
| 58 |
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_top_prediction(batch_texts, tokenizer, model):
|
| 63 |
+
inputs = tokenizer(batch_texts, return_tensors='pt', padding=True, truncation=True)
|
| 64 |
if torch.cuda.is_available():
|
| 65 |
model = model.cuda()
|
| 66 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
|
|
|
| 68 |
model = model.cpu()
|
| 69 |
inputs = {k: v.cpu() for k, v in inputs.items()}
|
| 70 |
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
with torch.no_grad():
|
| 75 |
outputs = model(**inputs)
|
| 76 |
+
logits = outputs.logits[:, -1, :] # Get logits of the last token for each input in the batch
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
|
| 81 |
options = [' A', ' B', ' C', ' D']
|
| 82 |
+
predictions = []
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
for i in range(len(batch_texts)):
|
| 88 |
+
option_logits = []
|
| 89 |
+
for option in options:
|
| 90 |
+
option_ids = tokenizer(option).input_ids
|
| 91 |
+
if option_ids and option_ids[-1] < logits.size(1):
|
| 92 |
+
option_logit = logits[i, option_ids[-1]].item()
|
| 93 |
+
option_logits.append((option_logit, option.strip()))
|
| 94 |
+
else:
|
| 95 |
+
print(f"Skipping option '{option}' due to index out of range for input {i}.")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
if not option_logits:
|
| 101 |
+
predictions.append("No valid options")
|
| 102 |
else:
|
| 103 |
+
top_option = max(option_logits, key=lambda x: x[0])[1]
|
| 104 |
+
predictions.append(top_option)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
return predictions
|
| 110 |
+
|
| 111 |
|
|
|
|
|
|
|
| 112 |
|
|
|
|
|
|
|
| 113 |
|
| 114 |
@spaces.GPU(duration=120)
|
| 115 |
+
def evaluate_model_accuracy_by_subject(model_name, num_questions_per_subject=100, batch_size=32):
|
| 116 |
try:
|
| 117 |
+
# Load the model and tokenizer
|
| 118 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 119 |
tokenizer.pad_token = tokenizer.eos_token
|
| 120 |
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
model = AutoModelForCausalLM.from_pretrained(
|
| 125 |
model_name,
|
| 126 |
trust_remote_code=True
|
| 127 |
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Convert model to FP16 (half precision) to reduce memory usage
|
| 131 |
+
model = model.half()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
if torch.cuda.is_available():
|
| 137 |
model = model.cuda() # Move model to GPU if available
|
| 138 |
else:
|
| 139 |
model = model.cpu()
|
| 140 |
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# Load your custom MMMLU dataset from HuggingFace
|
| 145 |
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
| 146 |
dataset = dataset['test']
|
| 147 |
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Filter out excluded subjects
|
| 152 |
dataset = dataset.filter(lambda x: x['Subject'] not in excluded_subjects)
|
| 153 |
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# Define prompt template
|
| 158 |
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
| 159 |
Question: {Question}
|
| 160 |
A) {A}
|
|
|
|
| 163 |
D) {D}
|
| 164 |
Answer:"""
|
| 165 |
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
| 170 |
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# Initialize results storage
|
| 175 |
subject_results = {}
|
| 176 |
overall_correct_predictions = 0
|
| 177 |
overall_total_questions = 0
|
| 178 |
|
|
|
|
| 179 |
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
|
| 182 |
+
subjects = dataset.unique('Subject')
|
| 183 |
for subject in subjects:
|
| 184 |
subject_data = dataset.filter(lambda x: x['Subject'] == subject)
|
| 185 |
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Sample num_questions_per_subject from each subject
|
| 190 |
if num_questions_per_subject > 0:
|
| 191 |
if len(subject_data) < num_questions_per_subject:
|
| 192 |
print(f"Warning: Not enough questions for subject '{subject}'. Using all available questions.")
|
|
|
|
| 195 |
selected_indices = random.sample(range(len(subject_data)), num_questions_per_subject)
|
| 196 |
subject_data = subject_data.select(selected_indices)
|
| 197 |
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
correct_predictions = 0
|
| 202 |
total_questions = 0
|
| 203 |
results = []
|
| 204 |
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
model.eval()
|
| 209 |
+
# Batch processing
|
| 210 |
+
for i in range(0, len(subject_data), batch_size):
|
| 211 |
+
batch_data = subject_data[i:i + batch_size]
|
| 212 |
+
|
| 213 |
+
# Generate batch texts
|
| 214 |
+
batch_texts = [
|
| 215 |
+
prompt_template.format(
|
| 216 |
+
Question=batch_data['Question'][j],
|
| 217 |
+
A=batch_data['A'][j],
|
| 218 |
+
B=batch_data['B'][j],
|
| 219 |
+
C=batch_data['C'][j],
|
| 220 |
+
D=batch_data['D'][j]
|
| 221 |
+
) for j in range(len(batch_data['Question']))
|
| 222 |
+
]
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# Get the top predictions for the batch
|
| 228 |
+
batch_predictions = get_top_prediction(batch_texts, tokenizer, model)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
for j in range(len(batch_data['Question'])):
|
| 234 |
+
top_prediction = batch_predictions[j]
|
| 235 |
+
is_correct = (top_prediction == batch_data['Answer'][j])
|
| 236 |
+
correct_predictions += int(is_correct)
|
| 237 |
+
total_questions += 1
|
| 238 |
+
overall_correct_predictions += int(is_correct)
|
| 239 |
+
overall_total_questions += 1
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
results.append({
|
| 245 |
+
'Question': batch_data['Question'][j],
|
| 246 |
+
'Answer': batch_data['Answer'][j],
|
| 247 |
+
'Prediction': top_prediction,
|
| 248 |
+
'Correct': is_correct
|
| 249 |
+
})
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# Clear GPU memory after processing each subject
|
| 255 |
+
torch.cuda.empty_cache()
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
|
| 260 |
accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
| 261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# Store results for this subject
|
| 266 |
subject_results[subject] = {
|
| 267 |
'Correct Predictions': correct_predictions,
|
| 268 |
'Total Questions': total_questions,
|
|
|
|
| 270 |
'Results DataFrame': pd.DataFrame(results)
|
| 271 |
}
|
| 272 |
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
overall_accuracy = (overall_correct_predictions / overall_total_questions) * 100 if overall_total_questions > 0 else 0
|
| 277 |
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
return overall_accuracy, subject_results
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
|
| 285 |
|
| 286 |
except Exception as e:
|
| 287 |
import traceback
|
| 288 |
tb = traceback.format_exc()
|
| 289 |
print(f"Error in evaluate_model_accuracy_by_subject: {e}\n{tb}")
|
| 290 |
+
return f"Error: {str(e)}", {}
|
| 291 |
+
|
| 292 |
+
|
| 293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
def add_new_eval(
|
| 296 |
model: str,
|
|
|
|
| 305 |
if not REQUESTED_MODELS:
|
| 306 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 307 |
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
|
| 311 |
user_name = ""
|
| 312 |
model_path = model
|
| 313 |
if "/" in model:
|
| 314 |
user_name = model.split("/")[0]
|
| 315 |
model_path = model.split("/")[1]
|
| 316 |
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
|
| 320 |
precision = precision.split(" ")[0]
|
| 321 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 322 |
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
|
| 326 |
if model_type is None or model_type == "":
|
| 327 |
return styled_error("Please select a model type.")
|
| 328 |
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
# Does the model actually exist?
|
| 333 |
if revision == "":
|
| 334 |
revision = "main"
|
| 335 |
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# Is the model on the hub?
|
| 340 |
if weight_type in ["Delta", "Adapter"]:
|
| 341 |
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 342 |
if not base_model_on_hub:
|
| 343 |
return styled_error(f'Base model "{base_model}" {error}')
|
| 344 |
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
|
| 348 |
if not weight_type == "Adapter":
|
| 349 |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 350 |
if not model_on_hub:
|
| 351 |
return styled_error(f'Model "{model}" {error}')
|
| 352 |
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
# Is the model info correctly filled?
|
| 357 |
+
try:
|
| 358 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
| 359 |
+
except Exception:
|
| 360 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
# Were the model card and license filled?
|
| 371 |
+
try:
|
| 372 |
+
license = model_info.cardData["license"]
|
| 373 |
+
except Exception:
|
| 374 |
+
return styled_error("Please select a license for your model")
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
modelcard_OK, error_msg = check_model_card(model)
|
| 380 |
+
if not modelcard_OK:
|
| 381 |
+
return styled_error(error_msg)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
# Check for duplicate submission
|
| 387 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
| 388 |
+
return styled_warning("This model has been already submitted.")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# Now, perform the evaluation
|
| 394 |
try:
|
| 395 |
+
overall_accuracy, subject_results = evaluate_model_accuracy_by_subject(model, num_questions_per_subject=100, batch_size=32)
|
| 396 |
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
| 397 |
return styled_error(overall_accuracy)
|
| 398 |
except Exception as e:
|
| 399 |
return styled_error(f"An error occurred during evaluation: {str(e)}")
|
| 400 |
|
| 401 |
+
|
| 402 |
+
|
| 403 |
|
| 404 |
# Prepare results for storage
|
| 405 |
results_dict = {
|
|
|
|
| 411 |
"weight_type": weight_type,
|
| 412 |
"model_type": model_type,
|
| 413 |
"submitted_time": current_time,
|
| 414 |
+
"license": license,
|
| 415 |
+
"likes": model_info.likes,
|
| 416 |
+
"params": model_size,
|
| 417 |
+
"still_on_hub": True,
|
| 418 |
},
|
| 419 |
"results": {
|
| 420 |
"average": overall_accuracy,
|
| 421 |
},
|
| 422 |
}
|
| 423 |
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
# Include per-subject accuracies
|
| 428 |
for subject, data in subject_results.items():
|
| 429 |
accuracy = data['Accuracy']
|
| 430 |
results_dict['results'][subject] = accuracy
|
| 431 |
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
|
| 435 |
# Save results to a JSON file
|
| 436 |
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|
| 437 |
with open(results_file_path, "w") as f:
|
| 438 |
json.dump(results_dict, f, indent=4)
|
| 439 |
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
|
| 443 |
# Upload the results file
|
| 444 |
API.upload_file(
|
| 445 |
path_or_fileobj=results_file_path,
|
|
|
|
| 449 |
commit_message=f"Add results for {model}"
|
| 450 |
)
|
| 451 |
|
| 452 |
+
# Remove the local results file
|
| 453 |
os.remove(results_file_path)
|
| 454 |
|
| 455 |
return styled_message("Your model has been evaluated and the results are now on the leaderboard!")
|