Omarrran commited on
Commit
b970552
·
verified ·
1 Parent(s): 04027fd

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +145 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import soundfile as sf
4
+ import spaces
5
+ import os
6
+ import numpy as np
7
+ import re
8
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
9
+ from speechbrain.pretrained import EncoderClassifier
10
+ from datasets import load_dataset
11
+
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+
14
+ def load_models_and_data():
15
+ model_name = "microsoft/speecht5_tts"
16
+ processor = SpeechT5Processor.from_pretrained(model_name)
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+
20
+ spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
21
+ speaker_model = EncoderClassifier.from_hparams(
22
+ source=spk_model_name,
23
+ run_opts={"device": device},
24
+ savedir=os.path.join("/tmp", spk_model_name),
25
+ )
26
+
27
+ # Load a sample from a dataset for default embedding
28
+ dataset = load_dataset("erenfazlioglu/turkishvoicedataset", split="train")
29
+ example = dataset[304]
30
+
31
+ return model, processor, vocoder, speaker_model, example
32
+
33
+ model, processor, vocoder, speaker_model, default_example = load_models_and_data()
34
+
35
+ def create_speaker_embedding(waveform):
36
+ with torch.no_grad():
37
+ speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
38
+ speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
39
+ speaker_embeddings = speaker_embeddings.squeeze()
40
+ return speaker_embeddings
41
+
42
+ def prepare_default_embedding(example):
43
+ audio = example["audio"]
44
+ return create_speaker_embedding(audio["array"])
45
+
46
+ default_embedding = prepare_default_embedding(default_example)
47
+
48
+ replacements = [
49
+ ("â", "a"), # Long a
50
+ ("ç", "ch"), # Ch as in "chair"
51
+ ("ğ", "gh"), # Silent g or slight elongation of the preceding vowel
52
+ ("ı", "i"), # Dotless i
53
+ ("î", "i"), # Long i
54
+ ("ö", "oe"), # Similar to German ö
55
+ ("ş", "sh"), # Sh as in "shoe"
56
+ ("ü", "ue"), # Similar to German ü
57
+ ("û", "u"), # Long u
58
+ ]
59
+
60
+ number_words = {
61
+ 0: "sıfır", 1: "bir", 2: "iki", 3: "üç", 4: "dört", 5: "beş", 6: "altı", 7: "yedi", 8: "sekiz", 9: "dokuz",
62
+ 10: "on", 11: "on bir", 12: "on iki", 13: "on üç", 14: "on dört", 15: "on beş", 16: "on altı", 17: "on yedi",
63
+ 18: "on sekiz", 19: "on dokuz", 20: "yirmi", 30: "otuz", 40: "kırk", 50: "elli", 60: "altmış", 70: "yetmiş",
64
+ 80: "seksen", 90: "doksan", 100: "yüz", 1000: "bin"
65
+ }
66
+
67
+ def number_to_words(number):
68
+ if number < 20:
69
+ return number_words[number]
70
+ elif number < 100:
71
+ tens, unit = divmod(number, 10)
72
+ return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
73
+ elif number < 1000:
74
+ hundreds, remainder = divmod(number, 100)
75
+ return (number_words[hundreds] + " yüz" if hundreds > 1 else "yüz") + (" " + number_to_words(remainder) if remainder else "")
76
+ elif number < 1000000:
77
+ thousands, remainder = divmod(number, 1000)
78
+ return (number_to_words(thousands) + " bin" if thousands > 1 else "bin") + (" " + number_to_words(remainder) if remainder else "")
79
+ elif number < 1000000000:
80
+ millions, remainder = divmod(number, 1000000)
81
+ return number_to_words(millions) + " milyon" + (" " + number_to_words(remainder) if remainder else "")
82
+ elif number < 1000000000000:
83
+ billions, remainder = divmod(number, 1000000000)
84
+ return number_to_words(billions) + " milyar" + (" " + number_to_words(remainder) if remainder else "")
85
+ else:
86
+ return str(number)
87
+
88
+ def replace_numbers_with_words(text):
89
+ def replace(match):
90
+ number = int(match.group())
91
+ return number_to_words(number)
92
+
93
+ # Find the numbers and change with words.
94
+ result = re.sub(r'\b\d+\b', replace, text)
95
+
96
+ return result
97
+
98
+ def normalize_text(text):
99
+ # Convert to lowercase
100
+ text = text.lower()
101
+
102
+ # Replace numbers with words
103
+ text = replace_numbers_with_words(text)
104
+
105
+ # Apply character replacements
106
+ for old, new in replacements:
107
+ text = text.replace(old, new)
108
+
109
+ # Remove punctuation
110
+ text = re.sub(r'[^\w\s]', '', text)
111
+
112
+ return text
113
+
114
+ @spaces.GPU(duration=60)
115
+ def text_to_speech(text, audio_file=None):
116
+ # Normalize the input text
117
+ normalized_text = normalize_text(text)
118
+
119
+ # Prepare the input for the model
120
+ inputs = processor(text=normalized_text, return_tensors="pt").to(device)
121
+
122
+ # Use the default speaker embedding
123
+ speaker_embeddings = default_embedding
124
+
125
+ # Generate speech
126
+ with torch.no_grad():
127
+ speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
128
+
129
+ speech_np = speech.cpu().numpy()
130
+
131
+ return (16000, speech_np)
132
+
133
+ iface = gr.Interface(
134
+ fn=text_to_speech,
135
+ inputs=[
136
+ gr.Textbox(label="Enter Turkish text to convert to speech")
137
+ ],
138
+ outputs=[
139
+ gr.Audio(label="Generated Speech", type="numpy")
140
+ ],
141
+ title="Turkish SpeechT5 Text-to-Speech Demo",
142
+ description="Enter Turkish text, and listen to the generated speech."
143
+ )
144
+
145
+ iface.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ numpy==1.23.5
2
+ transformers
3
+ datasets
4
+ soundfile
5
+ torch
6
+ torchaudio
7
+ sentencepiece
8
+ speechbrain==0.5.16
9
+ librosa