Make it easier to run with no audio file restrictions
Browse files- README.md +12 -0
- app-full.py +3 -0
- app.py +44 -33
README.md
CHANGED
@@ -11,3 +11,15 @@ license: apache-2.0
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
# Running Locally
|
16 |
+
|
17 |
+
To run this program locally, first install Python 3.9 and Git. Then install Pytorch 10.1 and all the dependencies:
|
18 |
+
```
|
19 |
+
pip install -r requirements.txt
|
20 |
+
```
|
21 |
+
|
22 |
+
Finally, run the "full" version of the app:
|
23 |
+
```
|
24 |
+
python app-full.py
|
25 |
+
```
|
app-full.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Run the app with no audio file restrictions
|
2 |
+
from app import createUi
|
3 |
+
createUi(-1)
|
app.py
CHANGED
@@ -10,7 +10,7 @@ import ffmpeg
|
|
10 |
#os.system("pip install git+https://github.com/openai/whisper.git")
|
11 |
|
12 |
# Limitations (set to -1 to disable)
|
13 |
-
|
14 |
|
15 |
LANGUAGES = [
|
16 |
"English", "Chinese", "German", "Spanish", "Russian", "Korean",
|
@@ -34,46 +34,57 @@ LANGUAGES = [
|
|
34 |
|
35 |
model_cache = dict()
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
selectedModel = modelName if modelName is not None else "base"
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
if
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
if not model:
|
52 |
-
model = whisper.load_model(selectedModel)
|
53 |
-
model_cache[selectedModel] = model
|
54 |
|
55 |
-
result = model.transcribe(source, language=selectedLanguage, task=task)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
segmentStream.seek(0)
|
60 |
|
61 |
-
|
|
|
|
|
62 |
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
if INPUT_AUDIO_MAX_DURATION > 0:
|
69 |
-
ui_description += "\n\n" + "Max audio file length: " + str(INPUT_AUDIO_MAX_DURATION) + " s"
|
70 |
|
71 |
-
demo
|
72 |
-
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
73 |
-
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
74 |
-
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
75 |
-
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
|
76 |
-
gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
|
77 |
-
], outputs=[gr.Text(label="Transcription"), gr.Text(label="Segments")])
|
78 |
|
79 |
-
|
|
|
|
10 |
#os.system("pip install git+https://github.com/openai/whisper.git")
|
11 |
|
12 |
# Limitations (set to -1 to disable)
|
13 |
+
DEFAULT_INPUT_AUDIO_MAX_DURATION = 120 # seconds
|
14 |
|
15 |
LANGUAGES = [
|
16 |
"English", "Chinese", "German", "Spanish", "Russian", "Korean",
|
|
|
34 |
|
35 |
model_cache = dict()
|
36 |
|
37 |
+
class UI:
|
38 |
+
def __init__(self, inputAudioMaxDuration):
|
39 |
+
self.inputAudioMaxDuration = inputAudioMaxDuration
|
|
|
40 |
|
41 |
+
def transcribeFile(self, modelName, languageName, uploadFile, microphoneData, task):
|
42 |
+
source = uploadFile if uploadFile is not None else microphoneData
|
43 |
+
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
|
44 |
+
selectedModel = modelName if modelName is not None else "base"
|
45 |
+
|
46 |
+
if self.inputAudioMaxDuration > 0:
|
47 |
+
# Calculate audio length
|
48 |
+
audioDuration = ffmpeg.probe(source)["format"]["duration"]
|
49 |
+
|
50 |
+
if float(audioDuration) > self.inputAudioMaxDuration:
|
51 |
+
return ("[ERROR]: Maximum audio file length is " + str(self.inputAudioMaxDuration) + "s, file was " + str(audioDuration) + "s"), "[ERROR]"
|
52 |
+
|
53 |
+
model = model_cache.get(selectedModel, None)
|
54 |
|
55 |
+
if not model:
|
56 |
+
model = whisper.load_model(selectedModel)
|
57 |
+
model_cache[selectedModel] = model
|
58 |
+
|
59 |
+
result = model.transcribe(source, language=selectedLanguage, task=task)
|
60 |
+
|
61 |
+
segmentStream = StringIO()
|
62 |
+
write_vtt(result["segments"], file=segmentStream)
|
63 |
+
segmentStream.seek(0)
|
64 |
|
65 |
+
return result["text"], segmentStream.read()
|
|
|
|
|
|
|
|
|
66 |
|
|
|
67 |
|
68 |
+
def createUi(inputAudioMaxDuration):
|
69 |
+
ui = UI(inputAudioMaxDuration)
|
|
|
70 |
|
71 |
+
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
|
72 |
+
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
|
73 |
+
ui_description += " as well as speech translation and language identification. "
|
74 |
|
75 |
+
if inputAudioMaxDuration > 0:
|
76 |
+
ui_description += "\n\n" + "Max audio file length: " + str(inputAudioMaxDuration) + " s"
|
77 |
|
78 |
+
demo = gr.Interface(fn=ui.transcribeFile, description=ui_description, inputs=[
|
79 |
+
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
80 |
+
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
81 |
+
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
82 |
+
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
|
83 |
+
gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
|
84 |
+
], outputs=[gr.Text(label="Transcription"), gr.Text(label="Segments")])
|
85 |
|
|
|
|
|
86 |
|
87 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
if __name__ == '__main__':
|
90 |
+
createUi(DEFAULT_INPUT_AUDIO_MAX_DURATION)
|