Eddycrack864 commited on
Commit
322bcd8
1 Parent(s): b7b35b9

Delete lib_v5

Browse files
Files changed (38) hide show
  1. lib_v5/mdxnet.py +0 -136
  2. lib_v5/mixer.ckpt +0 -3
  3. lib_v5/modules.py +0 -74
  4. lib_v5/pyrb.py +0 -92
  5. lib_v5/results.py +0 -48
  6. lib_v5/spec_utils.py +0 -1241
  7. lib_v5/tfc_tdf_v3.py +0 -253
  8. lib_v5/vr_network/__init__.py +0 -1
  9. lib_v5/vr_network/layers.py +0 -143
  10. lib_v5/vr_network/layers_new.py +0 -126
  11. lib_v5/vr_network/model_param_init.py +0 -32
  12. lib_v5/vr_network/modelparams/1band_sr16000_hl512.json +0 -19
  13. lib_v5/vr_network/modelparams/1band_sr32000_hl512.json +0 -19
  14. lib_v5/vr_network/modelparams/1band_sr33075_hl384.json +0 -19
  15. lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json +0 -19
  16. lib_v5/vr_network/modelparams/1band_sr44100_hl256.json +0 -19
  17. lib_v5/vr_network/modelparams/1band_sr44100_hl512.json +0 -19
  18. lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json +0 -19
  19. lib_v5/vr_network/modelparams/1band_sr44100_hl512_nf1024.json +0 -19
  20. lib_v5/vr_network/modelparams/2band_32000.json +0 -30
  21. lib_v5/vr_network/modelparams/2band_44100_lofi.json +0 -30
  22. lib_v5/vr_network/modelparams/2band_48000.json +0 -30
  23. lib_v5/vr_network/modelparams/3band_44100.json +0 -42
  24. lib_v5/vr_network/modelparams/3band_44100_mid.json +0 -43
  25. lib_v5/vr_network/modelparams/3band_44100_msb2.json +0 -43
  26. lib_v5/vr_network/modelparams/4band_44100.json +0 -54
  27. lib_v5/vr_network/modelparams/4band_44100_mid.json +0 -55
  28. lib_v5/vr_network/modelparams/4band_44100_msb.json +0 -55
  29. lib_v5/vr_network/modelparams/4band_44100_msb2.json +0 -55
  30. lib_v5/vr_network/modelparams/4band_44100_reverse.json +0 -55
  31. lib_v5/vr_network/modelparams/4band_44100_sw.json +0 -55
  32. lib_v5/vr_network/modelparams/4band_v2.json +0 -54
  33. lib_v5/vr_network/modelparams/4band_v2_sn.json +0 -55
  34. lib_v5/vr_network/modelparams/4band_v3.json +0 -54
  35. lib_v5/vr_network/modelparams/4band_v3_sn.json +0 -55
  36. lib_v5/vr_network/modelparams/ensemble.json +0 -43
  37. lib_v5/vr_network/nets.py +0 -166
  38. lib_v5/vr_network/nets_new.py +0 -125
lib_v5/mdxnet.py DELETED
@@ -1,136 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from .modules import TFC_TDF
4
- from pytorch_lightning import LightningModule
5
-
6
- dim_s = 4
7
-
8
- class AbstractMDXNet(LightningModule):
9
- def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap):
10
- super().__init__()
11
- self.target_name = target_name
12
- self.lr = lr
13
- self.optimizer = optimizer
14
- self.dim_c = dim_c
15
- self.dim_f = dim_f
16
- self.dim_t = dim_t
17
- self.n_fft = n_fft
18
- self.n_bins = n_fft // 2 + 1
19
- self.hop_length = hop_length
20
- self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
21
- self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)
22
-
23
- def get_optimizer(self):
24
- if self.optimizer == 'rmsprop':
25
- return torch.optim.RMSprop(self.parameters(), self.lr)
26
-
27
- if self.optimizer == 'adamw':
28
- return torch.optim.AdamW(self.parameters(), self.lr)
29
-
30
- class ConvTDFNet(AbstractMDXNet):
31
- def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length,
32
- num_blocks, l, g, k, bn, bias, overlap):
33
-
34
- super(ConvTDFNet, self).__init__(
35
- target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap)
36
- #self.save_hyperparameters()
37
-
38
- self.num_blocks = num_blocks
39
- self.l = l
40
- self.g = g
41
- self.k = k
42
- self.bn = bn
43
- self.bias = bias
44
-
45
- if optimizer == 'rmsprop':
46
- norm = nn.BatchNorm2d
47
-
48
- if optimizer == 'adamw':
49
- norm = lambda input:nn.GroupNorm(2, input)
50
-
51
- self.n = num_blocks // 2
52
- scale = (2, 2)
53
-
54
- self.first_conv = nn.Sequential(
55
- nn.Conv2d(in_channels=self.dim_c, out_channels=g, kernel_size=(1, 1)),
56
- norm(g),
57
- nn.ReLU(),
58
- )
59
-
60
- f = self.dim_f
61
- c = g
62
- self.encoding_blocks = nn.ModuleList()
63
- self.ds = nn.ModuleList()
64
- for i in range(self.n):
65
- self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
66
- self.ds.append(
67
- nn.Sequential(
68
- nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
69
- norm(c + g),
70
- nn.ReLU()
71
- )
72
- )
73
- f = f // 2
74
- c += g
75
-
76
- self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)
77
-
78
- self.decoding_blocks = nn.ModuleList()
79
- self.us = nn.ModuleList()
80
- for i in range(self.n):
81
- self.us.append(
82
- nn.Sequential(
83
- nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
84
- norm(c - g),
85
- nn.ReLU()
86
- )
87
- )
88
- f = f * 2
89
- c -= g
90
-
91
- self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
92
-
93
- self.final_conv = nn.Sequential(
94
- nn.Conv2d(in_channels=c, out_channels=self.dim_c, kernel_size=(1, 1)),
95
- )
96
-
97
- def forward(self, x):
98
-
99
- x = self.first_conv(x)
100
-
101
- x = x.transpose(-1, -2)
102
-
103
- ds_outputs = []
104
- for i in range(self.n):
105
- x = self.encoding_blocks[i](x)
106
- ds_outputs.append(x)
107
- x = self.ds[i](x)
108
-
109
- x = self.bottleneck_block(x)
110
-
111
- for i in range(self.n):
112
- x = self.us[i](x)
113
- x *= ds_outputs[-i - 1]
114
- x = self.decoding_blocks[i](x)
115
-
116
- x = x.transpose(-1, -2)
117
-
118
- x = self.final_conv(x)
119
-
120
- return x
121
-
122
- class Mixer(nn.Module):
123
- def __init__(self, device, mixer_path):
124
-
125
- super(Mixer, self).__init__()
126
-
127
- self.linear = nn.Linear((dim_s+1)*2, dim_s*2, bias=False)
128
-
129
- self.load_state_dict(
130
- torch.load(mixer_path, map_location=device)
131
- )
132
-
133
- def forward(self, x):
134
- x = x.reshape(1,(dim_s+1)*2,-1).transpose(-1,-2)
135
- x = self.linear(x)
136
- return x.transpose(-1,-2).reshape(dim_s,2,-1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/mixer.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ea781bd52c6a523b825fa6cdbb6189f52e318edd8b17e6fe404f76f7af8caa9c
3
- size 1208
 
 
 
 
lib_v5/modules.py DELETED
@@ -1,74 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
-
5
- class TFC(nn.Module):
6
- def __init__(self, c, l, k, norm):
7
- super(TFC, self).__init__()
8
-
9
- self.H = nn.ModuleList()
10
- for i in range(l):
11
- self.H.append(
12
- nn.Sequential(
13
- nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
14
- norm(c),
15
- nn.ReLU(),
16
- )
17
- )
18
-
19
- def forward(self, x):
20
- for h in self.H:
21
- x = h(x)
22
- return x
23
-
24
-
25
- class DenseTFC(nn.Module):
26
- def __init__(self, c, l, k, norm):
27
- super(DenseTFC, self).__init__()
28
-
29
- self.conv = nn.ModuleList()
30
- for i in range(l):
31
- self.conv.append(
32
- nn.Sequential(
33
- nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
34
- norm(c),
35
- nn.ReLU(),
36
- )
37
- )
38
-
39
- def forward(self, x):
40
- for layer in self.conv[:-1]:
41
- x = torch.cat([layer(x), x], 1)
42
- return self.conv[-1](x)
43
-
44
-
45
- class TFC_TDF(nn.Module):
46
- def __init__(self, c, l, f, k, bn, dense=False, bias=True, norm=nn.BatchNorm2d):
47
-
48
- super(TFC_TDF, self).__init__()
49
-
50
- self.use_tdf = bn is not None
51
-
52
- self.tfc = DenseTFC(c, l, k, norm) if dense else TFC(c, l, k, norm)
53
-
54
- if self.use_tdf:
55
- if bn == 0:
56
- self.tdf = nn.Sequential(
57
- nn.Linear(f, f, bias=bias),
58
- norm(c),
59
- nn.ReLU()
60
- )
61
- else:
62
- self.tdf = nn.Sequential(
63
- nn.Linear(f, f // bn, bias=bias),
64
- norm(c),
65
- nn.ReLU(),
66
- nn.Linear(f // bn, f, bias=bias),
67
- norm(c),
68
- nn.ReLU()
69
- )
70
-
71
- def forward(self, x):
72
- x = self.tfc(x)
73
- return x + self.tdf(x) if self.use_tdf else x
74
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/pyrb.py DELETED
@@ -1,92 +0,0 @@
1
- import os
2
- import subprocess
3
- import tempfile
4
- import six
5
- import numpy as np
6
- import soundfile as sf
7
- import sys
8
-
9
- if getattr(sys, 'frozen', False):
10
- BASE_PATH_RUB = sys._MEIPASS
11
- else:
12
- BASE_PATH_RUB = os.path.dirname(os.path.abspath(__file__))
13
-
14
- __all__ = ['time_stretch', 'pitch_shift']
15
-
16
- __RUBBERBAND_UTIL = os.path.join(BASE_PATH_RUB, 'rubberband')
17
-
18
- if six.PY2:
19
- DEVNULL = open(os.devnull, 'w')
20
- else:
21
- DEVNULL = subprocess.DEVNULL
22
-
23
- def __rubberband(y, sr, **kwargs):
24
-
25
- assert sr > 0
26
-
27
- # Get the input and output tempfile
28
- fd, infile = tempfile.mkstemp(suffix='.wav')
29
- os.close(fd)
30
- fd, outfile = tempfile.mkstemp(suffix='.wav')
31
- os.close(fd)
32
-
33
- # dump the audio
34
- sf.write(infile, y, sr)
35
-
36
- try:
37
- # Execute rubberband
38
- arguments = [__RUBBERBAND_UTIL, '-q']
39
-
40
- for key, value in six.iteritems(kwargs):
41
- arguments.append(str(key))
42
- arguments.append(str(value))
43
-
44
- arguments.extend([infile, outfile])
45
-
46
- subprocess.check_call(arguments, stdout=DEVNULL, stderr=DEVNULL)
47
-
48
- # Load the processed audio.
49
- y_out, _ = sf.read(outfile, always_2d=True)
50
-
51
- # make sure that output dimensions matches input
52
- if y.ndim == 1:
53
- y_out = np.squeeze(y_out)
54
-
55
- except OSError as exc:
56
- six.raise_from(RuntimeError('Failed to execute rubberband. '
57
- 'Please verify that rubberband-cli '
58
- 'is installed.'),
59
- exc)
60
-
61
- finally:
62
- # Remove temp files
63
- os.unlink(infile)
64
- os.unlink(outfile)
65
-
66
- return y_out
67
-
68
- def time_stretch(y, sr, rate, rbargs=None):
69
- if rate <= 0:
70
- raise ValueError('rate must be strictly positive')
71
-
72
- if rate == 1.0:
73
- return y
74
-
75
- if rbargs is None:
76
- rbargs = dict()
77
-
78
- rbargs.setdefault('--tempo', rate)
79
-
80
- return __rubberband(y, sr, **rbargs)
81
-
82
- def pitch_shift(y, sr, n_steps, rbargs=None):
83
-
84
- if n_steps == 0:
85
- return y
86
-
87
- if rbargs is None:
88
- rbargs = dict()
89
-
90
- rbargs.setdefault('--pitch', n_steps)
91
-
92
- return __rubberband(y, sr, **rbargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/results.py DELETED
@@ -1,48 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- """
4
- Matchering - Audio Matching and Mastering Python Library
5
- Copyright (C) 2016-2022 Sergree
6
-
7
- This program is free software: you can redistribute it and/or modify
8
- it under the terms of the GNU General Public License as published by
9
- the Free Software Foundation, either version 3 of the License, or
10
- (at your option) any later version.
11
-
12
- This program is distributed in the hope that it will be useful,
13
- but WITHOUT ANY WARRANTY; without even the implied warranty of
14
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
- GNU General Public License for more details.
16
-
17
- You should have received a copy of the GNU General Public License
18
- along with this program. If not, see <https://www.gnu.org/licenses/>.
19
- """
20
-
21
- import os
22
- import soundfile as sf
23
-
24
-
25
- class Result:
26
- def __init__(
27
- self, file: str, subtype: str, use_limiter: bool = True, normalize: bool = True
28
- ):
29
- _, file_ext = os.path.splitext(file)
30
- file_ext = file_ext[1:].upper()
31
- if not sf.check_format(file_ext):
32
- raise TypeError(f"{file_ext} format is not supported")
33
- if not sf.check_format(file_ext, subtype):
34
- raise TypeError(f"{file_ext} format does not have {subtype} subtype")
35
- self.file = file
36
- self.subtype = subtype
37
- self.use_limiter = use_limiter
38
- self.normalize = normalize
39
-
40
-
41
- def pcm16(file: str) -> Result:
42
- return Result(file, "PCM_16")
43
-
44
- def pcm24(file: str) -> Result:
45
- return Result(file, "FLOAT")
46
-
47
- def save_audiofile(file: str, wav_set="PCM_16") -> Result:
48
- return Result(file, wav_set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/spec_utils.py DELETED
@@ -1,1241 +0,0 @@
1
- import audioread
2
- import librosa
3
- import numpy as np
4
- import soundfile as sf
5
- import math
6
- import platform
7
- import traceback
8
- from . import pyrb
9
- from scipy.signal import correlate, hilbert
10
- import io
11
-
12
- OPERATING_SYSTEM = platform.system()
13
- SYSTEM_ARCH = platform.platform()
14
- SYSTEM_PROC = platform.processor()
15
- ARM = 'arm'
16
-
17
- AUTO_PHASE = "Automatic"
18
- POSITIVE_PHASE = "Positive Phase"
19
- NEGATIVE_PHASE = "Negative Phase"
20
- NONE_P = "None",
21
- LOW_P = "Shifts: Low",
22
- MED_P = "Shifts: Medium",
23
- HIGH_P = "Shifts: High",
24
- VHIGH_P = "Shifts: Very High"
25
- MAXIMUM_P = "Shifts: Maximum"
26
-
27
- progress_value = 0
28
- last_update_time = 0
29
- is_macos = False
30
-
31
- if OPERATING_SYSTEM == 'Windows':
32
- from pyrubberband import pyrb
33
- else:
34
- from . import pyrb
35
-
36
- if OPERATING_SYSTEM == 'Darwin':
37
- wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
38
- wav_resolution_float_resampling = "kaiser_best" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else wav_resolution
39
- is_macos = True
40
- else:
41
- wav_resolution = "sinc_fastest"
42
- wav_resolution_float_resampling = wav_resolution
43
-
44
- MAX_SPEC = 'Max Spec'
45
- MIN_SPEC = 'Min Spec'
46
- LIN_ENSE = 'Linear Ensemble'
47
-
48
- MAX_WAV = MAX_SPEC
49
- MIN_WAV = MIN_SPEC
50
-
51
- AVERAGE = 'Average'
52
-
53
- def crop_center(h1, h2):
54
- h1_shape = h1.size()
55
- h2_shape = h2.size()
56
-
57
- if h1_shape[3] == h2_shape[3]:
58
- return h1
59
- elif h1_shape[3] < h2_shape[3]:
60
- raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
61
-
62
- s_time = (h1_shape[3] - h2_shape[3]) // 2
63
- e_time = s_time + h2_shape[3]
64
- h1 = h1[:, :, :, s_time:e_time]
65
-
66
- return h1
67
-
68
- def preprocess(X_spec):
69
- X_mag = np.abs(X_spec)
70
- X_phase = np.angle(X_spec)
71
-
72
- return X_mag, X_phase
73
-
74
- def make_padding(width, cropsize, offset):
75
- left = offset
76
- roi_size = cropsize - offset * 2
77
- if roi_size == 0:
78
- roi_size = cropsize
79
- right = roi_size - (width % roi_size) + left
80
-
81
- return left, right, roi_size
82
-
83
- def normalize(wave, is_normalize=False):
84
- """Normalize audio"""
85
-
86
- maxv = np.abs(wave).max()
87
- if maxv > 1.0:
88
- if is_normalize:
89
- print("Above clipping threshold.")
90
- wave /= maxv
91
-
92
- return wave
93
-
94
- def auto_transpose(audio_array:np.ndarray):
95
- """
96
- Ensure that the audio array is in the (channels, samples) format.
97
-
98
- Parameters:
99
- audio_array (ndarray): Input audio array.
100
-
101
- Returns:
102
- ndarray: Transposed audio array if necessary.
103
- """
104
-
105
- # If the second dimension is 2 (indicating stereo channels), transpose the array
106
- if audio_array.shape[1] == 2:
107
- return audio_array.T
108
- return audio_array
109
-
110
- def write_array_to_mem(audio_data, subtype):
111
- if isinstance(audio_data, np.ndarray):
112
- audio_buffer = io.BytesIO()
113
- sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format='WAV')
114
- audio_buffer.seek(0)
115
- return audio_buffer
116
- else:
117
- return audio_data
118
-
119
- def spectrogram_to_image(spec, mode='magnitude'):
120
- if mode == 'magnitude':
121
- if np.iscomplexobj(spec):
122
- y = np.abs(spec)
123
- else:
124
- y = spec
125
- y = np.log10(y ** 2 + 1e-8)
126
- elif mode == 'phase':
127
- if np.iscomplexobj(spec):
128
- y = np.angle(spec)
129
- else:
130
- y = spec
131
-
132
- y -= y.min()
133
- y *= 255 / y.max()
134
- img = np.uint8(y)
135
-
136
- if y.ndim == 3:
137
- img = img.transpose(1, 2, 0)
138
- img = np.concatenate([
139
- np.max(img, axis=2, keepdims=True), img
140
- ], axis=2)
141
-
142
- return img
143
-
144
- def reduce_vocal_aggressively(X, y, softmask):
145
- v = X - y
146
- y_mag_tmp = np.abs(y)
147
- v_mag_tmp = np.abs(v)
148
-
149
- v_mask = v_mag_tmp > y_mag_tmp
150
- y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
151
-
152
- return y_mag * np.exp(1.j * np.angle(y))
153
-
154
- def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
155
- mask = y_mask
156
-
157
- try:
158
- if min_range < fade_size * 2:
159
- raise ValueError('min_range must be >= fade_size * 2')
160
-
161
- idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
162
- start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
163
- end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
164
- artifact_idx = np.where(end_idx - start_idx > min_range)[0]
165
- weight = np.zeros_like(y_mask)
166
- if len(artifact_idx) > 0:
167
- start_idx = start_idx[artifact_idx]
168
- end_idx = end_idx[artifact_idx]
169
- old_e = None
170
- for s, e in zip(start_idx, end_idx):
171
- if old_e is not None and s - old_e < fade_size:
172
- s = old_e - fade_size * 2
173
-
174
- if s != 0:
175
- weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
176
- else:
177
- s -= fade_size
178
-
179
- if e != y_mask.shape[2]:
180
- weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
181
- else:
182
- e += fade_size
183
-
184
- weight[:, :, s + fade_size:e - fade_size] = 1
185
- old_e = e
186
-
187
- v_mask = 1 - y_mask
188
- y_mask += weight * v_mask
189
-
190
- mask = y_mask
191
- except Exception as e:
192
- error_name = f'{type(e).__name__}'
193
- traceback_text = ''.join(traceback.format_tb(e.__traceback__))
194
- message = f'{error_name}: "{e}"\n{traceback_text}"'
195
- print('Post Process Failed: ', message)
196
-
197
- return mask
198
-
199
- def align_wave_head_and_tail(a, b):
200
- l = min([a[0].size, b[0].size])
201
-
202
- return a[:l,:l], b[:l,:l]
203
-
204
- def convert_channels(spec, mp, band):
205
- cc = mp.param['band'][band].get('convert_channels')
206
-
207
- if 'mid_side_c' == cc:
208
- spec_left = np.add(spec[0], spec[1] * .25)
209
- spec_right = np.subtract(spec[1], spec[0] * .25)
210
- elif 'mid_side' == cc:
211
- spec_left = np.add(spec[0], spec[1]) / 2
212
- spec_right = np.subtract(spec[0], spec[1])
213
- elif 'stereo_n' == cc:
214
- spec_left = np.add(spec[0], spec[1] * .25) / 0.9375
215
- spec_right = np.add(spec[1], spec[0] * .25) / 0.9375
216
- else:
217
- return spec
218
-
219
- return np.asfortranarray([spec_left, spec_right])
220
-
221
- def combine_spectrograms(specs, mp, is_v51_model=False):
222
- l = min([specs[i].shape[2] for i in specs])
223
- spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
224
- offset = 0
225
- bands_n = len(mp.param['band'])
226
-
227
- for d in range(1, bands_n + 1):
228
- h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
229
- spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
230
- offset += h
231
-
232
- if offset > mp.param['bins']:
233
- raise ValueError('Too much bins')
234
-
235
- # lowpass fiter
236
-
237
- if mp.param['pre_filter_start'] > 0:
238
- if is_v51_model:
239
- spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
240
- else:
241
- if bands_n == 1:
242
- spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
243
- else:
244
- gp = 1
245
- for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
246
- g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
247
- gp = g
248
- spec_c[:, b, :] *= g
249
-
250
- return np.asfortranarray(spec_c)
251
-
252
- def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
253
-
254
- if wave.ndim == 1:
255
- wave = np.asfortranarray([wave,wave])
256
-
257
- if not is_v51_model:
258
- if mp.param['reverse']:
259
- wave_left = np.flip(np.asfortranarray(wave[0]))
260
- wave_right = np.flip(np.asfortranarray(wave[1]))
261
- elif mp.param['mid_side']:
262
- wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
263
- wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
264
- elif mp.param['mid_side_b2']:
265
- wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
266
- wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
267
- else:
268
- wave_left = np.asfortranarray(wave[0])
269
- wave_right = np.asfortranarray(wave[1])
270
- else:
271
- wave_left = np.asfortranarray(wave[0])
272
- wave_right = np.asfortranarray(wave[1])
273
-
274
- spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
275
- spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
276
-
277
- spec = np.asfortranarray([spec_left, spec_right])
278
-
279
- if is_v51_model:
280
- spec = convert_channels(spec, mp, band)
281
-
282
- return spec
283
-
284
- def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
285
- spec_left = np.asfortranarray(spec[0])
286
- spec_right = np.asfortranarray(spec[1])
287
-
288
- wave_left = librosa.istft(spec_left, hop_length=hop_length)
289
- wave_right = librosa.istft(spec_right, hop_length=hop_length)
290
-
291
- if is_v51_model:
292
- cc = mp.param['band'][band].get('convert_channels')
293
- if 'mid_side_c' == cc:
294
- return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
295
- elif 'mid_side' == cc:
296
- return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
297
- elif 'stereo_n' == cc:
298
- return np.asfortranarray([np.subtract(wave_left, wave_right * .25), np.subtract(wave_right, wave_left * .25)])
299
- else:
300
- if mp.param['reverse']:
301
- return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
302
- elif mp.param['mid_side']:
303
- return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
304
- elif mp.param['mid_side_b2']:
305
- return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
306
-
307
- return np.asfortranarray([wave_left, wave_right])
308
-
309
- def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
310
- bands_n = len(mp.param['band'])
311
- offset = 0
312
-
313
- for d in range(1, bands_n + 1):
314
- bp = mp.param['band'][d]
315
- spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
316
- h = bp['crop_stop'] - bp['crop_start']
317
- spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
318
-
319
- offset += h
320
- if d == bands_n: # higher
321
- if extra_bins_h: # if --high_end_process bypass
322
- max_bin = bp['n_fft'] // 2
323
- spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
324
- if bp['hpf_start'] > 0:
325
- if is_v51_model:
326
- spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
327
- else:
328
- spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
329
- if bands_n == 1:
330
- wave = spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model)
331
- else:
332
- wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
333
- else:
334
- sr = mp.param['band'][d+1]['sr']
335
- if d == 1: # lower
336
- if is_v51_model:
337
- spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
338
- else:
339
- spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
340
- wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model), bp['sr'], sr, res_type=wav_resolution)
341
- else: # mid
342
- if is_v51_model:
343
- spec_s *= get_hp_filter_mask(spec_s.shape[1], bp['hpf_start'], bp['hpf_stop'] - 1)
344
- spec_s *= get_lp_filter_mask(spec_s.shape[1], bp['lpf_start'], bp['lpf_stop'])
345
- else:
346
- spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
347
- spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
348
-
349
- wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp, d, is_v51_model))
350
- wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
351
-
352
- return wave
353
-
354
- def get_lp_filter_mask(n_bins, bin_start, bin_stop):
355
- mask = np.concatenate([
356
- np.ones((bin_start - 1, 1)),
357
- np.linspace(1, 0, bin_stop - bin_start + 1)[:, None],
358
- np.zeros((n_bins - bin_stop, 1))
359
- ], axis=0)
360
-
361
- return mask
362
-
363
- def get_hp_filter_mask(n_bins, bin_start, bin_stop):
364
- mask = np.concatenate([
365
- np.zeros((bin_stop + 1, 1)),
366
- np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None],
367
- np.ones((n_bins - bin_start - 2, 1))
368
- ], axis=0)
369
-
370
- return mask
371
-
372
- def fft_lp_filter(spec, bin_start, bin_stop):
373
- g = 1.0
374
- for b in range(bin_start, bin_stop):
375
- g -= 1 / (bin_stop - bin_start)
376
- spec[:, b, :] = g * spec[:, b, :]
377
-
378
- spec[:, bin_stop:, :] *= 0
379
-
380
- return spec
381
-
382
- def fft_hp_filter(spec, bin_start, bin_stop):
383
- g = 1.0
384
- for b in range(bin_start, bin_stop, -1):
385
- g -= 1 / (bin_start - bin_stop)
386
- spec[:, b, :] = g * spec[:, b, :]
387
-
388
- spec[:, 0:bin_stop+1, :] *= 0
389
-
390
- return spec
391
-
392
- def spectrogram_to_wave_old(spec, hop_length=1024):
393
- if spec.ndim == 2:
394
- wave = librosa.istft(spec, hop_length=hop_length)
395
- elif spec.ndim == 3:
396
- spec_left = np.asfortranarray(spec[0])
397
- spec_right = np.asfortranarray(spec[1])
398
-
399
- wave_left = librosa.istft(spec_left, hop_length=hop_length)
400
- wave_right = librosa.istft(spec_right, hop_length=hop_length)
401
- wave = np.asfortranarray([wave_left, wave_right])
402
-
403
- return wave
404
-
405
- def wave_to_spectrogram_old(wave, hop_length, n_fft):
406
- wave_left = np.asfortranarray(wave[0])
407
- wave_right = np.asfortranarray(wave[1])
408
-
409
- spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
410
- spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
411
-
412
- spec = np.asfortranarray([spec_left, spec_right])
413
-
414
- return spec
415
-
416
- def mirroring(a, spec_m, input_high_end, mp):
417
- if 'mirroring' == a:
418
- mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
419
- mirror = mirror * np.exp(1.j * np.angle(input_high_end))
420
-
421
- return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
422
-
423
- if 'mirroring2' == a:
424
- mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
425
- mi = np.multiply(mirror, input_high_end * 1.7)
426
-
427
- return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
428
-
429
- def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
430
- aggr = aggressiveness['value'] * 2
431
-
432
- if aggr != 0:
433
- if is_non_accom_stem:
434
- aggr = 1 - aggr
435
-
436
- aggr = [aggr, aggr]
437
-
438
- if aggressiveness['aggr_correction'] is not None:
439
- aggr[0] += aggressiveness['aggr_correction']['left']
440
- aggr[1] += aggressiveness['aggr_correction']['right']
441
-
442
- for ch in range(2):
443
- mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
444
- mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])
445
-
446
- return mask
447
-
448
- def stft(wave, nfft, hl):
449
- wave_left = np.asfortranarray(wave[0])
450
- wave_right = np.asfortranarray(wave[1])
451
- spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
452
- spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
453
- spec = np.asfortranarray([spec_left, spec_right])
454
-
455
- return spec
456
-
457
- def istft(spec, hl):
458
- spec_left = np.asfortranarray(spec[0])
459
- spec_right = np.asfortranarray(spec[1])
460
- wave_left = librosa.istft(spec_left, hop_length=hl)
461
- wave_right = librosa.istft(spec_right, hop_length=hl)
462
- wave = np.asfortranarray([wave_left, wave_right])
463
-
464
- return wave
465
-
466
- def spec_effects(wave, algorithm='Default', value=None):
467
- spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
468
- if algorithm == 'Min_Mag':
469
- v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
470
- wave = istft(v_spec_m,1024)
471
- elif algorithm == 'Max_Mag':
472
- v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
473
- wave = istft(v_spec_m,1024)
474
- elif algorithm == 'Default':
475
- wave = (wave[1] * value) + (wave[0] * (1-value))
476
- elif algorithm == 'Invert_p':
477
- X_mag = np.abs(spec[0])
478
- y_mag = np.abs(spec[1])
479
- max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
480
- v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
481
- wave = istft(v_spec,1024)
482
-
483
- return wave
484
-
485
- def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
486
- wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
487
-
488
- if wave.ndim == 1:
489
- wave = np.asfortranarray([wave,wave])
490
-
491
- return wave
492
-
493
- def wave_to_spectrogram_no_mp(wave):
494
-
495
- spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
496
-
497
- if spec.ndim == 1:
498
- spec = np.asfortranarray([spec,spec])
499
-
500
- return spec
501
-
502
- def invert_audio(specs, invert_p=True):
503
-
504
- ln = min([specs[0].shape[2], specs[1].shape[2]])
505
- specs[0] = specs[0][:,:,:ln]
506
- specs[1] = specs[1][:,:,:ln]
507
-
508
- if invert_p:
509
- X_mag = np.abs(specs[0])
510
- y_mag = np.abs(specs[1])
511
- max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
512
- v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
513
- else:
514
- specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
515
- v_spec = specs[0] - specs[1]
516
-
517
- return v_spec
518
-
519
- def invert_stem(mixture, stem):
520
- mixture = wave_to_spectrogram_no_mp(mixture)
521
- stem = wave_to_spectrogram_no_mp(stem)
522
- output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
523
-
524
- return -output.T
525
-
526
- def ensembling(a, inputs, is_wavs=False):
527
-
528
- for i in range(1, len(inputs)):
529
- if i == 1:
530
- input = inputs[0]
531
-
532
- if is_wavs:
533
- ln = min([input.shape[1], inputs[i].shape[1]])
534
- input = input[:,:ln]
535
- inputs[i] = inputs[i][:,:ln]
536
- else:
537
- ln = min([input.shape[2], inputs[i].shape[2]])
538
- input = input[:,:,:ln]
539
- inputs[i] = inputs[i][:,:,:ln]
540
-
541
- if MIN_SPEC == a:
542
- input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
543
- if MAX_SPEC == a:
544
- input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)
545
-
546
- #linear_ensemble
547
- #input = ensemble_wav(inputs, split_size=1)
548
-
549
- return input
550
-
551
- def ensemble_for_align(waves):
552
-
553
- specs = []
554
-
555
- for wav in waves:
556
- spec = wave_to_spectrogram_no_mp(wav.T)
557
- specs.append(spec)
558
-
559
- wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
560
- wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)
561
-
562
- return wav_aligned
563
-
564
- def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
565
-
566
- wavs_ = []
567
-
568
- if algorithm == AVERAGE:
569
- output = average_audio(audio_input)
570
- samplerate = 44100
571
- else:
572
- specs = []
573
-
574
- for i in range(len(audio_input)):
575
- wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
576
- wavs_.append(wave)
577
- spec = wave if is_wave else wave_to_spectrogram_no_mp(wave)
578
- specs.append(spec)
579
-
580
- wave_shapes = [w.shape[1] for w in wavs_]
581
- target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
582
-
583
- if is_wave:
584
- output = ensembling(algorithm, specs, is_wavs=True)
585
- else:
586
- output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
587
-
588
- output = to_shape(output, target_shape.shape)
589
-
590
- sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
591
-
592
- def to_shape(x, target_shape):
593
- padding_list = []
594
- for x_dim, target_dim in zip(x.shape, target_shape):
595
- pad_value = (target_dim - x_dim)
596
- pad_tuple = ((0, pad_value))
597
- padding_list.append(pad_tuple)
598
-
599
- return np.pad(x, tuple(padding_list), mode='constant')
600
-
601
- def to_shape_minimize(x: np.ndarray, target_shape):
602
-
603
- padding_list = []
604
- for x_dim, target_dim in zip(x.shape, target_shape):
605
- pad_value = (target_dim - x_dim)
606
- pad_tuple = ((0, pad_value))
607
- padding_list.append(pad_tuple)
608
-
609
- return np.pad(x, tuple(padding_list), mode='constant')
610
-
611
- def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
612
- """
613
- Detect silence at the beginning of an audio signal.
614
-
615
- :param audio: np.array, audio signal
616
- :param sr: int, sample rate
617
- :param silence_threshold: float, magnitude threshold below which is considered silence
618
- :param frame_length: int, the number of samples to consider for each check
619
-
620
- :return: float, duration of the leading silence in milliseconds
621
- """
622
-
623
- if len(audio.shape) == 2:
624
- # If stereo, pick the channel with more energy to determine the silence
625
- channel = np.argmax(np.sum(np.abs(audio), axis=1))
626
- audio = audio[channel]
627
-
628
- for i in range(0, len(audio), frame_length):
629
- if np.max(np.abs(audio[i:i+frame_length])) > silence_threshold:
630
- return (i / sr) * 1000
631
-
632
- return (len(audio) / sr) * 1000
633
-
634
- def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
635
- """
636
- Adjust the leading silence of the target_audio to match the leading silence of the reference_audio.
637
-
638
- :param target_audio: np.array, audio signal that will have its silence adjusted
639
- :param reference_audio: np.array, audio signal used as a reference
640
- :param sr: int, sample rate
641
- :param silence_threshold: float, magnitude threshold below which is considered silence
642
- :param frame_length: int, the number of samples to consider for each check
643
-
644
- :return: np.array, target_audio adjusted to have the same leading silence as reference_audio
645
- """
646
-
647
- def find_silence_end(audio):
648
- if len(audio.shape) == 2:
649
- # If stereo, pick the channel with more energy to determine the silence
650
- channel = np.argmax(np.sum(np.abs(audio), axis=1))
651
- audio_mono = audio[channel]
652
- else:
653
- audio_mono = audio
654
-
655
- for i in range(0, len(audio_mono), frame_length):
656
- if np.max(np.abs(audio_mono[i:i+frame_length])) > silence_threshold:
657
- return i
658
- return len(audio_mono)
659
-
660
- ref_silence_end = find_silence_end(reference_audio)
661
- target_silence_end = find_silence_end(target_audio)
662
- silence_difference = ref_silence_end - target_silence_end
663
-
664
- try:
665
- ref_silence_end_p = (ref_silence_end / 44100) * 1000
666
- target_silence_end_p = (target_silence_end / 44100) * 1000
667
- silence_difference_p = ref_silence_end_p - target_silence_end_p
668
- print("silence_difference: ", silence_difference_p)
669
- except Exception as e:
670
- pass
671
-
672
- if silence_difference > 0: # Add silence to target_audio
673
- if len(target_audio.shape) == 2: # stereo
674
- silence_to_add = np.zeros((target_audio.shape[0], silence_difference))
675
- else: # mono
676
- silence_to_add = np.zeros(silence_difference)
677
- return np.hstack((silence_to_add, target_audio))
678
- elif silence_difference < 0: # Remove silence from target_audio
679
- if len(target_audio.shape) == 2: # stereo
680
- return target_audio[:, -silence_difference:]
681
- else: # mono
682
- return target_audio[-silence_difference:]
683
- else: # No adjustment needed
684
- return target_audio
685
-
686
- def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray, is_swap=False):
687
-
688
- if is_swap:
689
- array_1, array_2 = array_1.T, array_2.T
690
-
691
- #print("before", array_1.shape, array_2.shape)
692
- if array_1.shape[1] > array_2.shape[1]:
693
- array_1 = array_1[:,:array_2.shape[1]]
694
- elif array_1.shape[1] < array_2.shape[1]:
695
- padding = array_2.shape[1] - array_1.shape[1]
696
- array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
697
-
698
- #print("after", array_1.shape, array_2.shape)
699
-
700
- if is_swap:
701
- array_1, array_2 = array_1.T, array_2.T
702
-
703
- return array_1
704
-
705
- def match_mono_array_shapes(array_1: np.ndarray, array_2: np.ndarray):
706
-
707
- if len(array_1) > len(array_2):
708
- array_1 = array_1[:len(array_2)]
709
- elif len(array_1) < len(array_2):
710
- padding = len(array_2) - len(array_1)
711
- array_1 = np.pad(array_1, (0, padding), 'constant', constant_values=0)
712
-
713
- return array_1
714
-
715
- def change_pitch_semitones(y, sr, semitone_shift):
716
- factor = 2 ** (semitone_shift / 12) # Convert semitone shift to factor for resampling
717
- y_pitch_tuned = []
718
- for y_channel in y:
719
- y_pitch_tuned.append(librosa.resample(y_channel, sr, sr*factor, res_type=wav_resolution_float_resampling))
720
- y_pitch_tuned = np.array(y_pitch_tuned)
721
- new_sr = sr * factor
722
- return y_pitch_tuned, new_sr
723
-
724
- def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
725
-
726
- wav, sr = librosa.load(audio_file, sr=44100, mono=False)
727
-
728
- if wav.ndim == 1:
729
- wav = np.asfortranarray([wav,wav])
730
-
731
- if not is_time_correction:
732
- wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
733
- else:
734
- if is_pitch:
735
- wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
736
- wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
737
- else:
738
- wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
739
- wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)
740
-
741
- if wav_1.shape > wav_2.shape:
742
- wav_2 = to_shape(wav_2, wav_1.shape)
743
- if wav_1.shape < wav_2.shape:
744
- wav_1 = to_shape(wav_1, wav_2.shape)
745
-
746
- wav_mix = np.asfortranarray([wav_1, wav_2])
747
-
748
- sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
749
- save_format(export_path)
750
-
751
- def average_audio(audio):
752
-
753
- waves = []
754
- wave_shapes = []
755
- final_waves = []
756
-
757
- for i in range(len(audio)):
758
- wave = librosa.load(audio[i], sr=44100, mono=False)
759
- waves.append(wave[0])
760
- wave_shapes.append(wave[0].shape[1])
761
-
762
- wave_shapes_index = wave_shapes.index(max(wave_shapes))
763
- target_shape = waves[wave_shapes_index]
764
- waves.pop(wave_shapes_index)
765
- final_waves.append(target_shape)
766
-
767
- for n_array in waves:
768
- wav_target = to_shape(n_array, target_shape.shape)
769
- final_waves.append(wav_target)
770
-
771
- waves = sum(final_waves)
772
- waves = waves/len(audio)
773
-
774
- return waves
775
-
776
- def average_dual_sources(wav_1, wav_2, value):
777
-
778
- if wav_1.shape > wav_2.shape:
779
- wav_2 = to_shape(wav_2, wav_1.shape)
780
- if wav_1.shape < wav_2.shape:
781
- wav_1 = to_shape(wav_1, wav_2.shape)
782
-
783
- wave = (wav_1 * value) + (wav_2 * (1-value))
784
-
785
- return wave
786
-
787
- def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
788
-
789
- if wav_1.shape > wav_2.shape:
790
- wav_2 = to_shape(wav_2, wav_1.shape)
791
- if wav_1.shape < wav_2.shape:
792
- ln = min([wav_1.shape[1], wav_2.shape[1]])
793
- wav_2 = wav_2[:,:ln]
794
-
795
- ln = min([wav_1.shape[1], wav_2.shape[1]])
796
- wav_1 = wav_1[:,:ln]
797
- wav_2 = wav_2[:,:ln]
798
-
799
- return wav_2
800
-
801
- def reshape_sources_ref(wav_1_shape, wav_2: np.ndarray):
802
-
803
- if wav_1_shape > wav_2.shape:
804
- wav_2 = to_shape(wav_2, wav_1_shape)
805
-
806
- return wav_2
807
-
808
- def combine_arrarys(audio_sources, is_swap=False):
809
- source = np.zeros_like(max(audio_sources, key=np.size))
810
-
811
- for v in audio_sources:
812
- v = match_array_shapes(v, source, is_swap=is_swap)
813
- source += v
814
-
815
- return source
816
-
817
- def combine_audio(paths: list, audio_file_base=None, wav_type_set='FLOAT', save_format=None):
818
-
819
- source = combine_arrarys([load_audio(i) for i in paths])
820
- save_path = f"{audio_file_base}_combined.wav"
821
- sf.write(save_path, source.T, 44100, subtype=wav_type_set)
822
- save_format(save_path)
823
-
824
- def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
825
- # Reduce the volume
826
- inst_source = inst_source * (1 - reduction_rate)
827
-
828
- mix_reduced = combine_arrarys([inst_source, voc_source], is_swap=True)
829
-
830
- return mix_reduced
831
-
832
- def organize_inputs(inputs):
833
- input_list = {
834
- "target":None,
835
- "reference":None,
836
- "reverb":None,
837
- "inst":None
838
- }
839
-
840
- for i in inputs:
841
- if i.endswith("_(Vocals).wav"):
842
- input_list["reference"] = i
843
- elif "_RVC_" in i:
844
- input_list["target"] = i
845
- elif i.endswith("reverbed_stem.wav"):
846
- input_list["reverb"] = i
847
- elif i.endswith("_(Instrumental).wav"):
848
- input_list["inst"] = i
849
-
850
- return input_list
851
-
852
- def check_if_phase_inverted(wav1, wav2, is_mono=False):
853
- # Load the audio files
854
- if not is_mono:
855
- wav1 = np.mean(wav1, axis=0)
856
- wav2 = np.mean(wav2, axis=0)
857
-
858
- # Compute the correlation
859
- correlation = np.corrcoef(wav1[:1000], wav2[:1000])
860
-
861
- return correlation[0,1] < 0
862
-
863
- def align_audio(file1,
864
- file2,
865
- file2_aligned,
866
- file_subtracted,
867
- wav_type_set,
868
- is_save_aligned,
869
- command_Text,
870
- save_format,
871
- align_window:list,
872
- align_intro_val:list,
873
- db_analysis:tuple,
874
- set_progress_bar,
875
- phase_option,
876
- phase_shifts,
877
- is_match_silence,
878
- is_spec_match):
879
-
880
- global progress_value
881
- progress_value = 0
882
- is_mono = False
883
-
884
- def get_diff(a, b):
885
- corr = np.correlate(a, b, "full")
886
- diff = corr.argmax() - (b.shape[0] - 1)
887
-
888
- return diff
889
-
890
- def progress_bar(length):
891
- global progress_value
892
- progress_value += 1
893
-
894
- if (0.90/length*progress_value) >= 0.9:
895
- length = progress_value + 1
896
-
897
- set_progress_bar(0.1, (0.9/length*progress_value))
898
-
899
- # read tracks
900
-
901
- if file1.endswith(".mp3") and is_macos:
902
- length1 = rerun_mp3(file1)
903
- wav1, sr1 = librosa.load(file1, duration=length1, sr=44100, mono=False)
904
- else:
905
- wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
906
-
907
- if file2.endswith(".mp3") and is_macos:
908
- length2 = rerun_mp3(file2)
909
- wav2, sr2 = librosa.load(file2, duration=length2, sr=44100, mono=False)
910
- else:
911
- wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
912
-
913
- if wav1.ndim == 1 and wav2.ndim == 1:
914
- is_mono = True
915
- elif wav1.ndim == 1:
916
- wav1 = np.asfortranarray([wav1,wav1])
917
- elif wav2.ndim == 1:
918
- wav2 = np.asfortranarray([wav2,wav2])
919
-
920
- # Check if phase is inverted
921
- if phase_option == AUTO_PHASE:
922
- if check_if_phase_inverted(wav1, wav2, is_mono=is_mono):
923
- wav2 = -wav2
924
- elif phase_option == POSITIVE_PHASE:
925
- wav2 = +wav2
926
- elif phase_option == NEGATIVE_PHASE:
927
- wav2 = -wav2
928
-
929
- if is_match_silence:
930
- wav2 = adjust_leading_silence(wav2, wav1)
931
-
932
- wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
933
- wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
934
-
935
- if not is_mono:
936
- wav1 = wav1.transpose()
937
- wav2 = wav2.transpose()
938
-
939
- wav2_org = wav2.copy()
940
-
941
- command_Text("Processing files... \n")
942
- seconds_length = min(wav1_length, wav2_length)
943
-
944
- wav2_aligned_sources = []
945
-
946
- for sec_len in align_intro_val:
947
- # pick a position at 1 second in and get diff
948
- sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
949
- index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
950
-
951
- if is_mono:
952
- samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
953
- diff = get_diff(samp1, samp2)
954
- #print(f"Estimated difference: {diff}\n")
955
- else:
956
- index = sr1*sec_seg # 1 second in, assuming sr1 = sr2 = 44100
957
- samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
958
- samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
959
- diff, diff_r = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
960
- #print(f"Estimated difference Left Channel: {diff}\nEstimated difference Right Channel: {diff_r}\n")
961
-
962
- # make aligned track 2
963
- if diff > 0:
964
- zeros_to_append = np.zeros(diff) if is_mono else np.zeros((diff, 2))
965
- wav2_aligned = np.append(zeros_to_append, wav2_org, axis=0)
966
- elif diff < 0:
967
- wav2_aligned = wav2_org[-diff:]
968
- else:
969
- wav2_aligned = wav2_org
970
- #command_Text(f"Audio files already aligned.\n")
971
-
972
- if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources):
973
- wav2_aligned_sources.append(wav2_aligned)
974
-
975
- #print("Unique Sources: ", len(wav2_aligned_sources))
976
-
977
- unique_sources = len(wav2_aligned_sources)
978
-
979
- sub_mapper_big_mapper = {}
980
-
981
- for s in wav2_aligned_sources:
982
- wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
983
-
984
- if align_window:
985
- wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
986
- wav_sub_size = np.abs(wav_sub).mean()
987
- sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
988
- else:
989
- wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
990
- db_range = db_analysis[1]
991
-
992
- for db_adjustment in db_range:
993
- # Adjust the dB of track2
994
- s_adjusted = wav2_aligned * (10 ** (db_adjustment / 20))
995
- wav_sub = wav1 - s_adjusted
996
- wav_sub_size = np.abs(wav_sub).mean()
997
- sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{wav_sub_size:wav_sub}}
998
-
999
- #print(sub_mapper_big_mapper.keys(), min(sub_mapper_big_mapper.keys()))
1000
-
1001
- sub_mapper_value_list = list(sub_mapper_big_mapper.values())
1002
-
1003
- if is_spec_match and len(sub_mapper_value_list) >= 2:
1004
- #print("using spec ensemble with align")
1005
- wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values()))
1006
- else:
1007
- #print("using linear ensemble with align")
1008
- wav_sub = ensemble_wav(list(sub_mapper_big_mapper.values()))
1009
-
1010
- #print(f"Mix Mean: {np.abs(wav1).mean()}\nInst Mean: {np.abs(wav2).mean()}")
1011
- #print('Final: ', np.abs(wav_sub).mean())
1012
- wav_sub = np.clip(wav_sub, -1, +1)
1013
-
1014
- command_Text(f"Saving inverted track... ")
1015
-
1016
- if is_save_aligned or is_spec_match:
1017
- wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
1018
- wav2_aligned = wav1 - wav_sub
1019
-
1020
- if is_spec_match:
1021
- if wav1.ndim == 1 and wav2.ndim == 1:
1022
- wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
1023
- wav1 = np.asfortranarray([wav1, wav1]).T
1024
-
1025
- wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
1026
- wav_sub = wav1 - wav2_aligned
1027
-
1028
- if is_save_aligned:
1029
- sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
1030
- save_format(file2_aligned)
1031
-
1032
- sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
1033
- save_format(file_subtracted)
1034
-
1035
- def phase_shift_hilbert(signal, degree):
1036
- analytic_signal = hilbert(signal)
1037
- return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag
1038
-
1039
- def get_phase_shifted_tracks(track, phase_shift):
1040
- if phase_shift == 180:
1041
- return [track, -track]
1042
-
1043
- step = phase_shift
1044
- end = 180 - (180 % step) if 180 % step == 0 else 181
1045
- phase_range = range(step, end, step)
1046
-
1047
- flipped_list = [track, -track]
1048
- for i in phase_range:
1049
- flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])
1050
-
1051
- return flipped_list
1052
-
1053
- def time_correction(mix:np.ndarray, instrumental:np.ndarray, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
1054
- # Function to align two tracks using cross-correlation
1055
-
1056
- def align_tracks(track1, track2):
1057
- # A dictionary to store each version of track2_shifted and its mean absolute value
1058
- shifted_tracks = {}
1059
-
1060
- # Loop to adjust dB of track2
1061
- track2 = track2 * np.power(10, db_analysis[0] / 20)
1062
- db_range = db_analysis[1]
1063
-
1064
- if phase_shifts == 190:
1065
- track2_flipped = [track2]
1066
- else:
1067
- track2_flipped = get_phase_shifted_tracks(track2, phase_shifts)
1068
-
1069
- for db_adjustment in db_range:
1070
- for t in track2_flipped:
1071
- # Adjust the dB of track2
1072
- track2_adjusted = t * (10 ** (db_adjustment / 20))
1073
- corr = correlate(track1, track2_adjusted)
1074
- delay = np.argmax(np.abs(corr)) - (len(track1) - 1)
1075
- track2_shifted = np.roll(track2_adjusted, shift=delay)
1076
-
1077
- # Compute the mean absolute value of track2_shifted
1078
- track2_shifted_sub = track1 - track2_shifted
1079
- mean_abs_value = np.abs(track2_shifted_sub).mean()
1080
-
1081
- # Store track2_shifted and its mean absolute value in the dictionary
1082
- shifted_tracks[mean_abs_value] = track2_shifted
1083
-
1084
- # Return the version of track2_shifted with the smallest mean absolute value
1085
-
1086
- return shifted_tracks[min(shifted_tracks.keys())]
1087
-
1088
- # Make sure the audio files have the same shape
1089
-
1090
- assert mix.shape == instrumental.shape, f"Audio files must have the same shape - Mix: {mix.shape}, Inst: {instrumental.shape}"
1091
-
1092
- seconds_length = seconds_length // 2
1093
-
1094
- sub_mapper = {}
1095
-
1096
- progress_update_interval = 120
1097
- total_iterations = 0
1098
-
1099
- if len(align_window) > 2:
1100
- progress_update_interval = 320
1101
-
1102
- for secs in align_window:
1103
- step = secs / 2
1104
- window_size = int(sr * secs)
1105
- step_size = int(sr * step)
1106
-
1107
- if len(mix.shape) == 1:
1108
- total_mono = (len(range(0, len(mix) - window_size, step_size))//progress_update_interval)*unique_sources
1109
- total_iterations += total_mono
1110
- else:
1111
- total_stereo_ = len(range(0, len(mix[:, 0]) - window_size, step_size))*2
1112
- total_stereo = (total_stereo_//progress_update_interval) * unique_sources
1113
- total_iterations += total_stereo
1114
-
1115
- #print(total_iterations)
1116
-
1117
- for secs in align_window:
1118
- sub = np.zeros_like(mix)
1119
- divider = np.zeros_like(mix)
1120
- step = secs / 2
1121
- window_size = int(sr * secs)
1122
- step_size = int(sr * step)
1123
- window = np.hanning(window_size)
1124
-
1125
- # For the mono case:
1126
- if len(mix.shape) == 1:
1127
- # The files are mono
1128
- counter = 0
1129
- for i in range(0, len(mix) - window_size, step_size):
1130
- counter += 1
1131
- if counter % progress_update_interval == 0:
1132
- progress_bar(total_iterations)
1133
- window_mix = mix[i:i+window_size] * window
1134
- window_instrumental = instrumental[i:i+window_size] * window
1135
- window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
1136
- sub[i:i+window_size] += window_mix - window_instrumental_aligned
1137
- divider[i:i+window_size] += window
1138
- else:
1139
- # The files are stereo
1140
- counter = 0
1141
- for ch in range(mix.shape[1]):
1142
- for i in range(0, len(mix[:, ch]) - window_size, step_size):
1143
- counter += 1
1144
- if counter % progress_update_interval == 0:
1145
- progress_bar(total_iterations)
1146
- window_mix = mix[i:i+window_size, ch] * window
1147
- window_instrumental = instrumental[i:i+window_size, ch] * window
1148
- window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
1149
- sub[i:i+window_size, ch] += window_mix - window_instrumental_aligned
1150
- divider[i:i+window_size, ch] += window
1151
-
1152
- # Normalize the result by the overlap count
1153
- sub = np.where(divider > 1e-6, sub / divider, sub)
1154
- sub_size = np.abs(sub).mean()
1155
- sub_mapper = {**sub_mapper, **{sub_size: sub}}
1156
-
1157
- #print("SUB_LEN", len(list(sub_mapper.values())))
1158
-
1159
- sub = ensemble_wav(list(sub_mapper.values()), split_size=12)
1160
-
1161
- return sub
1162
-
1163
- def ensemble_wav(waveforms, split_size=240):
1164
- # Create a dictionary to hold the thirds of each waveform and their mean absolute values
1165
- waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}
1166
-
1167
- # Initialize the final waveform
1168
- final_waveform = []
1169
-
1170
- # For chunk
1171
- for third_idx in range(split_size):
1172
- # Compute the mean absolute value of each third from each waveform
1173
- means = [np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))]
1174
-
1175
- # Find the index of the waveform with the lowest mean absolute value for this third
1176
- min_index = np.argmin(means)
1177
-
1178
- # Add the least noisy third to the final waveform
1179
- final_waveform.append(waveform_thirds[min_index][third_idx])
1180
-
1181
- # Concatenate all the thirds to create the final waveform
1182
- final_waveform = np.concatenate(final_waveform)
1183
-
1184
- return final_waveform
1185
-
1186
- def ensemble_wav_min(waveforms):
1187
- for i in range(1, len(waveforms)):
1188
- if i == 1:
1189
- wave = waveforms[0]
1190
-
1191
- ln = min(len(wave), len(waveforms[i]))
1192
- wave = wave[:ln]
1193
- waveforms[i] = waveforms[i][:ln]
1194
-
1195
- wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
1196
-
1197
- return wave
1198
-
1199
- def align_audio_test(wav1, wav2, sr1=44100):
1200
- def get_diff(a, b):
1201
- corr = np.correlate(a, b, "full")
1202
- diff = corr.argmax() - (b.shape[0] - 1)
1203
- return diff
1204
-
1205
- # read tracks
1206
- wav1 = wav1.transpose()
1207
- wav2 = wav2.transpose()
1208
-
1209
- #print(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
1210
-
1211
- wav2_org = wav2.copy()
1212
-
1213
- # pick a position at 1 second in and get diff
1214
- index = sr1#*seconds_length # 1 second in, assuming sr1 = sr2 = 44100
1215
- samp1 = wav1[index : index + sr1, 0] # currently use left channel
1216
- samp2 = wav2[index : index + sr1, 0]
1217
- diff = get_diff(samp1, samp2)
1218
-
1219
- # make aligned track 2
1220
- if diff > 0:
1221
- wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
1222
- elif diff < 0:
1223
- wav2_aligned = wav2_org[-diff:]
1224
- else:
1225
- wav2_aligned = wav2_org
1226
-
1227
- return wav2_aligned
1228
-
1229
- def load_audio(audio_file):
1230
- wav, sr = librosa.load(audio_file, sr=44100, mono=False)
1231
-
1232
- if wav.ndim == 1:
1233
- wav = np.asfortranarray([wav,wav])
1234
-
1235
- return wav
1236
-
1237
- def rerun_mp3(audio_file):
1238
- with audioread.audio_open(audio_file) as f:
1239
- track_length = int(f.duration)
1240
-
1241
- return track_length
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/tfc_tdf_v3.py DELETED
@@ -1,253 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from functools import partial
4
-
5
- class STFT:
6
- def __init__(self, n_fft, hop_length, dim_f, device):
7
- self.n_fft = n_fft
8
- self.hop_length = hop_length
9
- self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
10
- self.dim_f = dim_f
11
- self.device = device
12
-
13
- def __call__(self, x):
14
-
15
- x_is_mps = not x.device.type in ["cuda", "cpu"]
16
- if x_is_mps:
17
- x = x.cpu()
18
-
19
- window = self.window.to(x.device)
20
- batch_dims = x.shape[:-2]
21
- c, t = x.shape[-2:]
22
- x = x.reshape([-1, t])
23
- x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True,return_complex=False)
24
- x = x.permute([0, 3, 1, 2])
25
- x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]])
26
-
27
- if x_is_mps:
28
- x = x.to(self.device)
29
-
30
- return x[..., :self.dim_f, :]
31
-
32
- def inverse(self, x):
33
-
34
- x_is_mps = not x.device.type in ["cuda", "cpu"]
35
- if x_is_mps:
36
- x = x.cpu()
37
-
38
- window = self.window.to(x.device)
39
- batch_dims = x.shape[:-3]
40
- c, f, t = x.shape[-3:]
41
- n = self.n_fft // 2 + 1
42
- f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
43
- x = torch.cat([x, f_pad], -2)
44
- x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
45
- x = x.permute([0, 2, 3, 1])
46
- x = x[..., 0] + x[..., 1] * 1.j
47
- x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True)
48
- x = x.reshape([*batch_dims, 2, -1])
49
-
50
- if x_is_mps:
51
- x = x.to(self.device)
52
-
53
- return x
54
-
55
- def get_norm(norm_type):
56
- def norm(c, norm_type):
57
- if norm_type == 'BatchNorm':
58
- return nn.BatchNorm2d(c)
59
- elif norm_type == 'InstanceNorm':
60
- return nn.InstanceNorm2d(c, affine=True)
61
- elif 'GroupNorm' in norm_type:
62
- g = int(norm_type.replace('GroupNorm', ''))
63
- return nn.GroupNorm(num_groups=g, num_channels=c)
64
- else:
65
- return nn.Identity()
66
-
67
- return partial(norm, norm_type=norm_type)
68
-
69
-
70
- def get_act(act_type):
71
- if act_type == 'gelu':
72
- return nn.GELU()
73
- elif act_type == 'relu':
74
- return nn.ReLU()
75
- elif act_type[:3] == 'elu':
76
- alpha = float(act_type.replace('elu', ''))
77
- return nn.ELU(alpha)
78
- else:
79
- raise Exception
80
-
81
-
82
- class Upscale(nn.Module):
83
- def __init__(self, in_c, out_c, scale, norm, act):
84
- super().__init__()
85
- self.conv = nn.Sequential(
86
- norm(in_c),
87
- act,
88
- nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
89
- )
90
-
91
- def forward(self, x):
92
- return self.conv(x)
93
-
94
-
95
- class Downscale(nn.Module):
96
- def __init__(self, in_c, out_c, scale, norm, act):
97
- super().__init__()
98
- self.conv = nn.Sequential(
99
- norm(in_c),
100
- act,
101
- nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
102
- )
103
-
104
- def forward(self, x):
105
- return self.conv(x)
106
-
107
-
108
- class TFC_TDF(nn.Module):
109
- def __init__(self, in_c, c, l, f, bn, norm, act):
110
- super().__init__()
111
-
112
- self.blocks = nn.ModuleList()
113
- for i in range(l):
114
- block = nn.Module()
115
-
116
- block.tfc1 = nn.Sequential(
117
- norm(in_c),
118
- act,
119
- nn.Conv2d(in_c, c, 3, 1, 1, bias=False),
120
- )
121
- block.tdf = nn.Sequential(
122
- norm(c),
123
- act,
124
- nn.Linear(f, f // bn, bias=False),
125
- norm(c),
126
- act,
127
- nn.Linear(f // bn, f, bias=False),
128
- )
129
- block.tfc2 = nn.Sequential(
130
- norm(c),
131
- act,
132
- nn.Conv2d(c, c, 3, 1, 1, bias=False),
133
- )
134
- block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False)
135
-
136
- self.blocks.append(block)
137
- in_c = c
138
-
139
- def forward(self, x):
140
- for block in self.blocks:
141
- s = block.shortcut(x)
142
- x = block.tfc1(x)
143
- x = x + block.tdf(x)
144
- x = block.tfc2(x)
145
- x = x + s
146
- return x
147
-
148
-
149
- class TFC_TDF_net(nn.Module):
150
- def __init__(self, config, device):
151
- super().__init__()
152
- self.config = config
153
- self.device = device
154
-
155
- norm = get_norm(norm_type=config.model.norm)
156
- act = get_act(act_type=config.model.act)
157
-
158
- self.num_target_instruments = 1 if config.training.target_instrument else len(config.training.instruments)
159
- self.num_subbands = config.model.num_subbands
160
-
161
- dim_c = self.num_subbands * config.audio.num_channels * 2
162
- n = config.model.num_scales
163
- scale = config.model.scale
164
- l = config.model.num_blocks_per_scale
165
- c = config.model.num_channels
166
- g = config.model.growth
167
- bn = config.model.bottleneck_factor
168
- f = config.audio.dim_f // self.num_subbands
169
-
170
- self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False)
171
-
172
- self.encoder_blocks = nn.ModuleList()
173
- for i in range(n):
174
- block = nn.Module()
175
- block.tfc_tdf = TFC_TDF(c, c, l, f, bn, norm, act)
176
- block.downscale = Downscale(c, c + g, scale, norm, act)
177
- f = f // scale[1]
178
- c += g
179
- self.encoder_blocks.append(block)
180
-
181
- self.bottleneck_block = TFC_TDF(c, c, l, f, bn, norm, act)
182
-
183
- self.decoder_blocks = nn.ModuleList()
184
- for i in range(n):
185
- block = nn.Module()
186
- block.upscale = Upscale(c, c - g, scale, norm, act)
187
- f = f * scale[1]
188
- c -= g
189
- block.tfc_tdf = TFC_TDF(2 * c, c, l, f, bn, norm, act)
190
- self.decoder_blocks.append(block)
191
-
192
- self.final_conv = nn.Sequential(
193
- nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False),
194
- act,
195
- nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False)
196
- )
197
-
198
- self.stft = STFT(config.audio.n_fft, config.audio.hop_length, config.audio.dim_f, self.device)
199
-
200
- def cac2cws(self, x):
201
- k = self.num_subbands
202
- b, c, f, t = x.shape
203
- x = x.reshape(b, c, k, f // k, t)
204
- x = x.reshape(b, c * k, f // k, t)
205
- return x
206
-
207
- def cws2cac(self, x):
208
- k = self.num_subbands
209
- b, c, f, t = x.shape
210
- x = x.reshape(b, c // k, k, f, t)
211
- x = x.reshape(b, c // k, f * k, t)
212
- return x
213
-
214
- def forward(self, x):
215
-
216
- x = self.stft(x)
217
-
218
- mix = x = self.cac2cws(x)
219
-
220
- first_conv_out = x = self.first_conv(x)
221
-
222
- x = x.transpose(-1, -2)
223
-
224
- encoder_outputs = []
225
- for block in self.encoder_blocks:
226
- x = block.tfc_tdf(x)
227
- encoder_outputs.append(x)
228
- x = block.downscale(x)
229
-
230
- x = self.bottleneck_block(x)
231
-
232
- for block in self.decoder_blocks:
233
- x = block.upscale(x)
234
- x = torch.cat([x, encoder_outputs.pop()], 1)
235
- x = block.tfc_tdf(x)
236
-
237
- x = x.transpose(-1, -2)
238
-
239
- x = x * first_conv_out # reduce artifacts
240
-
241
- x = self.final_conv(torch.cat([mix, x], 1))
242
-
243
- x = self.cws2cac(x)
244
-
245
- if self.num_target_instruments > 1:
246
- b, c, f, t = x.shape
247
- x = x.reshape(b, self.num_target_instruments, -1, f, t)
248
-
249
- x = self.stft.inverse(x)
250
-
251
- return x
252
-
253
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/__init__.py DELETED
@@ -1 +0,0 @@
1
- # VR init.
 
 
lib_v5/vr_network/layers.py DELETED
@@ -1,143 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
-
5
- from lib_v5 import spec_utils
6
-
7
- class Conv2DBNActiv(nn.Module):
8
-
9
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
- super(Conv2DBNActiv, self).__init__()
11
- self.conv = nn.Sequential(
12
- nn.Conv2d(
13
- nin, nout,
14
- kernel_size=ksize,
15
- stride=stride,
16
- padding=pad,
17
- dilation=dilation,
18
- bias=False),
19
- nn.BatchNorm2d(nout),
20
- activ()
21
- )
22
-
23
- def __call__(self, x):
24
- return self.conv(x)
25
-
26
- class SeperableConv2DBNActiv(nn.Module):
27
-
28
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
29
- super(SeperableConv2DBNActiv, self).__init__()
30
- self.conv = nn.Sequential(
31
- nn.Conv2d(
32
- nin, nin,
33
- kernel_size=ksize,
34
- stride=stride,
35
- padding=pad,
36
- dilation=dilation,
37
- groups=nin,
38
- bias=False),
39
- nn.Conv2d(
40
- nin, nout,
41
- kernel_size=1,
42
- bias=False),
43
- nn.BatchNorm2d(nout),
44
- activ()
45
- )
46
-
47
- def __call__(self, x):
48
- return self.conv(x)
49
-
50
-
51
- class Encoder(nn.Module):
52
-
53
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
- super(Encoder, self).__init__()
55
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
- self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
-
58
- def __call__(self, x):
59
- skip = self.conv1(x)
60
- h = self.conv2(skip)
61
-
62
- return h, skip
63
-
64
-
65
- class Decoder(nn.Module):
66
-
67
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
68
- super(Decoder, self).__init__()
69
- self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
70
- self.dropout = nn.Dropout2d(0.1) if dropout else None
71
-
72
- def __call__(self, x, skip=None):
73
- x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
74
- if skip is not None:
75
- skip = spec_utils.crop_center(skip, x)
76
- x = torch.cat([x, skip], dim=1)
77
- h = self.conv(x)
78
-
79
- if self.dropout is not None:
80
- h = self.dropout(h)
81
-
82
- return h
83
-
84
-
85
- class ASPPModule(nn.Module):
86
-
87
- def __init__(self, nn_architecture, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88
- super(ASPPModule, self).__init__()
89
- self.conv1 = nn.Sequential(
90
- nn.AdaptiveAvgPool2d((1, None)),
91
- Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
92
- )
93
-
94
- self.nn_architecture = nn_architecture
95
- self.six_layer = [129605]
96
- self.seven_layer = [537238, 537227, 33966]
97
-
98
- extra_conv = SeperableConv2DBNActiv(
99
- nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
100
-
101
- self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
102
- self.conv3 = SeperableConv2DBNActiv(
103
- nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
104
- self.conv4 = SeperableConv2DBNActiv(
105
- nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
106
- self.conv5 = SeperableConv2DBNActiv(
107
- nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
108
-
109
- if self.nn_architecture in self.six_layer:
110
- self.conv6 = extra_conv
111
- nin_x = 6
112
- elif self.nn_architecture in self.seven_layer:
113
- self.conv6 = extra_conv
114
- self.conv7 = extra_conv
115
- nin_x = 7
116
- else:
117
- nin_x = 5
118
-
119
- self.bottleneck = nn.Sequential(
120
- Conv2DBNActiv(nin * nin_x, nout, 1, 1, 0, activ=activ),
121
- nn.Dropout2d(0.1)
122
- )
123
-
124
- def forward(self, x):
125
- _, _, h, w = x.size()
126
- feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
127
- feat2 = self.conv2(x)
128
- feat3 = self.conv3(x)
129
- feat4 = self.conv4(x)
130
- feat5 = self.conv5(x)
131
-
132
- if self.nn_architecture in self.six_layer:
133
- feat6 = self.conv6(x)
134
- out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1)
135
- elif self.nn_architecture in self.seven_layer:
136
- feat6 = self.conv6(x)
137
- feat7 = self.conv7(x)
138
- out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
139
- else:
140
- out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
141
-
142
- bottle = self.bottleneck(out)
143
- return bottle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/layers_new.py DELETED
@@ -1,126 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
-
5
- from lib_v5 import spec_utils
6
-
7
- class Conv2DBNActiv(nn.Module):
8
-
9
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
- super(Conv2DBNActiv, self).__init__()
11
- self.conv = nn.Sequential(
12
- nn.Conv2d(
13
- nin, nout,
14
- kernel_size=ksize,
15
- stride=stride,
16
- padding=pad,
17
- dilation=dilation,
18
- bias=False),
19
- nn.BatchNorm2d(nout),
20
- activ()
21
- )
22
-
23
- def __call__(self, x):
24
- return self.conv(x)
25
-
26
- class Encoder(nn.Module):
27
-
28
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
29
- super(Encoder, self).__init__()
30
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
31
- self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
32
-
33
- def __call__(self, x):
34
- h = self.conv1(x)
35
- h = self.conv2(h)
36
-
37
- return h
38
-
39
-
40
- class Decoder(nn.Module):
41
-
42
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
43
- super(Decoder, self).__init__()
44
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
45
- # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
46
- self.dropout = nn.Dropout2d(0.1) if dropout else None
47
-
48
- def __call__(self, x, skip=None):
49
- x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
50
-
51
- if skip is not None:
52
- skip = spec_utils.crop_center(skip, x)
53
- x = torch.cat([x, skip], dim=1)
54
-
55
- h = self.conv1(x)
56
- # h = self.conv2(h)
57
-
58
- if self.dropout is not None:
59
- h = self.dropout(h)
60
-
61
- return h
62
-
63
-
64
- class ASPPModule(nn.Module):
65
-
66
- def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
67
- super(ASPPModule, self).__init__()
68
- self.conv1 = nn.Sequential(
69
- nn.AdaptiveAvgPool2d((1, None)),
70
- Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
71
- )
72
- self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
73
- self.conv3 = Conv2DBNActiv(
74
- nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
75
- )
76
- self.conv4 = Conv2DBNActiv(
77
- nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
78
- )
79
- self.conv5 = Conv2DBNActiv(
80
- nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
81
- )
82
- self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
83
- self.dropout = nn.Dropout2d(0.1) if dropout else None
84
-
85
- def forward(self, x):
86
- _, _, h, w = x.size()
87
- feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
88
- feat2 = self.conv2(x)
89
- feat3 = self.conv3(x)
90
- feat4 = self.conv4(x)
91
- feat5 = self.conv5(x)
92
- out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
93
- out = self.bottleneck(out)
94
-
95
- if self.dropout is not None:
96
- out = self.dropout(out)
97
-
98
- return out
99
-
100
-
101
- class LSTMModule(nn.Module):
102
-
103
- def __init__(self, nin_conv, nin_lstm, nout_lstm):
104
- super(LSTMModule, self).__init__()
105
- self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
106
- self.lstm = nn.LSTM(
107
- input_size=nin_lstm,
108
- hidden_size=nout_lstm // 2,
109
- bidirectional=True
110
- )
111
- self.dense = nn.Sequential(
112
- nn.Linear(nout_lstm, nin_lstm),
113
- nn.BatchNorm1d(nin_lstm),
114
- nn.ReLU()
115
- )
116
-
117
- def forward(self, x):
118
- N, _, nbins, nframes = x.size()
119
- h = self.conv(x)[:, 0] # N, nbins, nframes
120
- h = h.permute(2, 0, 1) # nframes, N, nbins
121
- h, _ = self.lstm(h)
122
- h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
123
- h = h.reshape(nframes, N, 1, nbins)
124
- h = h.permute(1, 2, 3, 0)
125
-
126
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/model_param_init.py DELETED
@@ -1,32 +0,0 @@
1
- import json
2
-
3
- default_param = {}
4
- default_param['bins'] = -1
5
- default_param['unstable_bins'] = -1 # training only
6
- default_param['stable_bins'] = -1 # training only
7
- default_param['sr'] = 44100
8
- default_param['pre_filter_start'] = -1
9
- default_param['pre_filter_stop'] = -1
10
- default_param['band'] = {}
11
-
12
- N_BINS = 'n_bins'
13
-
14
- def int_keys(d):
15
- r = {}
16
- for k, v in d:
17
- if k.isdigit():
18
- k = int(k)
19
- r[k] = v
20
- return r
21
-
22
- class ModelParameters(object):
23
- def __init__(self, config_path=''):
24
- with open(config_path, 'r') as f:
25
- self.param = json.loads(f.read(), object_pairs_hook=int_keys)
26
-
27
- for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
28
- if not k in self.param:
29
- self.param[k] = False
30
-
31
- if N_BINS in self.param:
32
- self.param['bins'] = self.param[N_BINS]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr16000_hl512.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 16000,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 16000,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 1024
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr32000_hl512.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 32000,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "kaiser_fast"
14
- }
15
- },
16
- "sr": 32000,
17
- "pre_filter_start": 1000,
18
- "pre_filter_stop": 1021
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr33075_hl384.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 33075,
8
- "hl": 384,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 33075,
17
- "pre_filter_start": 1000,
18
- "pre_filter_stop": 1021
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 1024,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 1024
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl256.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 256,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 256,
9
- "n_fft": 512,
10
- "crop_start": 0,
11
- "crop_stop": 256,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 256,
18
- "pre_filter_stop": 256
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl512.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 1024
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 700,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 700
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl512_nf1024.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 512,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 512,
9
- "n_fft": 1024,
10
- "crop_start": 0,
11
- "crop_stop": 512,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 511,
18
- "pre_filter_stop": 512
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/2band_32000.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "reduction_bins": 705,
5
- "band": {
6
- "1": {
7
- "sr": 6000,
8
- "hl": 66,
9
- "n_fft": 512,
10
- "crop_start": 0,
11
- "crop_stop": 240,
12
- "lpf_start": 60,
13
- "lpf_stop": 118,
14
- "res_type": "sinc_fastest"
15
- },
16
- "2": {
17
- "sr": 32000,
18
- "hl": 352,
19
- "n_fft": 1024,
20
- "crop_start": 22,
21
- "crop_stop": 505,
22
- "hpf_start": 44,
23
- "hpf_stop": 23,
24
- "res_type": "sinc_medium"
25
- }
26
- },
27
- "sr": 32000,
28
- "pre_filter_start": 710,
29
- "pre_filter_stop": 731
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/2band_44100_lofi.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bins": 512,
3
- "unstable_bins": 7,
4
- "reduction_bins": 510,
5
- "band": {
6
- "1": {
7
- "sr": 11025,
8
- "hl": 160,
9
- "n_fft": 768,
10
- "crop_start": 0,
11
- "crop_stop": 192,
12
- "lpf_start": 41,
13
- "lpf_stop": 139,
14
- "res_type": "sinc_fastest"
15
- },
16
- "2": {
17
- "sr": 44100,
18
- "hl": 640,
19
- "n_fft": 1024,
20
- "crop_start": 10,
21
- "crop_stop": 320,
22
- "hpf_start": 47,
23
- "hpf_stop": 15,
24
- "res_type": "sinc_medium"
25
- }
26
- },
27
- "sr": 44100,
28
- "pre_filter_start": 510,
29
- "pre_filter_stop": 512
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/2band_48000.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "reduction_bins": 705,
5
- "band": {
6
- "1": {
7
- "sr": 6000,
8
- "hl": 66,
9
- "n_fft": 512,
10
- "crop_start": 0,
11
- "crop_stop": 240,
12
- "lpf_start": 60,
13
- "lpf_stop": 240,
14
- "res_type": "sinc_fastest"
15
- },
16
- "2": {
17
- "sr": 48000,
18
- "hl": 528,
19
- "n_fft": 1536,
20
- "crop_start": 22,
21
- "crop_stop": 505,
22
- "hpf_start": 82,
23
- "hpf_stop": 22,
24
- "res_type": "sinc_medium"
25
- }
26
- },
27
- "sr": 48000,
28
- "pre_filter_start": 710,
29
- "pre_filter_stop": 731
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/3band_44100.json DELETED
@@ -1,42 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 5,
4
- "reduction_bins": 733,
5
- "band": {
6
- "1": {
7
- "sr": 11025,
8
- "hl": 128,
9
- "n_fft": 768,
10
- "crop_start": 0,
11
- "crop_stop": 278,
12
- "lpf_start": 28,
13
- "lpf_stop": 140,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 22050,
18
- "hl": 256,
19
- "n_fft": 768,
20
- "crop_start": 14,
21
- "crop_stop": 322,
22
- "hpf_start": 70,
23
- "hpf_stop": 14,
24
- "lpf_start": 283,
25
- "lpf_stop": 314,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 44100,
30
- "hl": 512,
31
- "n_fft": 768,
32
- "crop_start": 131,
33
- "crop_stop": 313,
34
- "hpf_start": 154,
35
- "hpf_stop": 141,
36
- "res_type": "sinc_medium"
37
- }
38
- },
39
- "sr": 44100,
40
- "pre_filter_start": 757,
41
- "pre_filter_stop": 768
42
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/3band_44100_mid.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "mid_side": true,
3
- "bins": 768,
4
- "unstable_bins": 5,
5
- "reduction_bins": 733,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 768,
11
- "crop_start": 0,
12
- "crop_stop": 278,
13
- "lpf_start": 28,
14
- "lpf_stop": 140,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 22050,
19
- "hl": 256,
20
- "n_fft": 768,
21
- "crop_start": 14,
22
- "crop_stop": 322,
23
- "hpf_start": 70,
24
- "hpf_stop": 14,
25
- "lpf_start": 283,
26
- "lpf_stop": 314,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 44100,
31
- "hl": 512,
32
- "n_fft": 768,
33
- "crop_start": 131,
34
- "crop_stop": 313,
35
- "hpf_start": 154,
36
- "hpf_stop": 141,
37
- "res_type": "sinc_medium"
38
- }
39
- },
40
- "sr": 44100,
41
- "pre_filter_start": 757,
42
- "pre_filter_stop": 768
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/3band_44100_msb2.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "mid_side_b2": true,
3
- "bins": 640,
4
- "unstable_bins": 7,
5
- "reduction_bins": 565,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 108,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 187,
13
- "lpf_start": 92,
14
- "lpf_stop": 186,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 22050,
19
- "hl": 216,
20
- "n_fft": 768,
21
- "crop_start": 0,
22
- "crop_stop": 212,
23
- "hpf_start": 68,
24
- "hpf_stop": 34,
25
- "lpf_start": 174,
26
- "lpf_stop": 209,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 44100,
31
- "hl": 432,
32
- "n_fft": 640,
33
- "crop_start": 66,
34
- "crop_stop": 307,
35
- "hpf_start": 86,
36
- "hpf_stop": 72,
37
- "res_type": "kaiser_fast"
38
- }
39
- },
40
- "sr": 44100,
41
- "pre_filter_start": 639,
42
- "pre_filter_stop": 640
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100.json DELETED
@@ -1,54 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "reduction_bins": 668,
5
- "band": {
6
- "1": {
7
- "sr": 11025,
8
- "hl": 128,
9
- "n_fft": 1024,
10
- "crop_start": 0,
11
- "crop_stop": 186,
12
- "lpf_start": 37,
13
- "lpf_stop": 73,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 11025,
18
- "hl": 128,
19
- "n_fft": 512,
20
- "crop_start": 4,
21
- "crop_stop": 185,
22
- "hpf_start": 36,
23
- "hpf_stop": 18,
24
- "lpf_start": 93,
25
- "lpf_stop": 185,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 22050,
30
- "hl": 256,
31
- "n_fft": 512,
32
- "crop_start": 46,
33
- "crop_stop": 186,
34
- "hpf_start": 93,
35
- "hpf_stop": 46,
36
- "lpf_start": 164,
37
- "lpf_stop": 186,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 512,
43
- "n_fft": 768,
44
- "crop_start": 121,
45
- "crop_stop": 382,
46
- "hpf_start": 138,
47
- "hpf_stop": 123,
48
- "res_type": "sinc_medium"
49
- }
50
- },
51
- "sr": 44100,
52
- "pre_filter_start": 740,
53
- "pre_filter_stop": 768
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_mid.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "mid_side": true,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_msb.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "mid_side_b": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_msb2.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "mid_side_b": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_reverse.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "reverse": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_sw.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "stereo_w": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v2.json DELETED
@@ -1,54 +0,0 @@
1
- {
2
- "bins": 672,
3
- "unstable_bins": 8,
4
- "reduction_bins": 637,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "res_type": "kaiser_fast"
49
- }
50
- },
51
- "sr": 44100,
52
- "pre_filter_start": 668,
53
- "pre_filter_stop": 672
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v2_sn.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "bins": 672,
3
- "unstable_bins": 8,
4
- "reduction_bins": 637,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "convert_channels": "stereo_n",
49
- "res_type": "kaiser_fast"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 668,
54
- "pre_filter_stop": 672
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v3.json DELETED
@@ -1,54 +0,0 @@
1
- {
2
- "bins": 672,
3
- "unstable_bins": 8,
4
- "reduction_bins": 530,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "res_type": "kaiser_fast"
49
- }
50
- },
51
- "sr": 44100,
52
- "pre_filter_start": 668,
53
- "pre_filter_stop": 672
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v3_sn.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "n_bins": 672,
3
- "unstable_bins": 8,
4
- "stable_bins": 530,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "convert_channels": "stereo_n",
49
- "res_type": "kaiser_fast"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 668,
54
- "pre_filter_stop": 672
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/ensemble.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "mid_side_b2": true,
3
- "bins": 1280,
4
- "unstable_bins": 7,
5
- "reduction_bins": 565,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 108,
10
- "n_fft": 2048,
11
- "crop_start": 0,
12
- "crop_stop": 374,
13
- "lpf_start": 92,
14
- "lpf_stop": 186,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 22050,
19
- "hl": 216,
20
- "n_fft": 1536,
21
- "crop_start": 0,
22
- "crop_stop": 424,
23
- "hpf_start": 68,
24
- "hpf_stop": 34,
25
- "lpf_start": 348,
26
- "lpf_stop": 418,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 44100,
31
- "hl": 432,
32
- "n_fft": 1280,
33
- "crop_start": 132,
34
- "crop_stop": 614,
35
- "hpf_start": 172,
36
- "hpf_stop": 144,
37
- "res_type": "polyphase"
38
- }
39
- },
40
- "sr": 44100,
41
- "pre_filter_start": 1280,
42
- "pre_filter_stop": 1280
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/nets.py DELETED
@@ -1,166 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
-
5
- from . import layers
6
-
7
- class BaseASPPNet(nn.Module):
8
-
9
- def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
10
- super(BaseASPPNet, self).__init__()
11
- self.nn_architecture = nn_architecture
12
- self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
13
- self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
14
- self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
15
- self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
16
-
17
- if self.nn_architecture == 129605:
18
- self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
19
- self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
20
- self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
21
- else:
22
- self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
23
-
24
- self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
25
- self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
26
- self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
27
- self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
28
-
29
- def __call__(self, x):
30
- h, e1 = self.enc1(x)
31
- h, e2 = self.enc2(h)
32
- h, e3 = self.enc3(h)
33
- h, e4 = self.enc4(h)
34
-
35
- if self.nn_architecture == 129605:
36
- h, e5 = self.enc5(h)
37
- h = self.aspp(h)
38
- h = self.dec5(h, e5)
39
- else:
40
- h = self.aspp(h)
41
-
42
- h = self.dec4(h, e4)
43
- h = self.dec3(h, e3)
44
- h = self.dec2(h, e2)
45
- h = self.dec1(h, e1)
46
-
47
- return h
48
-
49
- def determine_model_capacity(n_fft_bins, nn_architecture):
50
-
51
- sp_model_arch = [31191, 33966, 129605]
52
- hp_model_arch = [123821, 123812]
53
- hp2_model_arch = [537238, 537227]
54
-
55
- if nn_architecture in sp_model_arch:
56
- model_capacity_data = [
57
- (2, 16),
58
- (2, 16),
59
- (18, 8, 1, 1, 0),
60
- (8, 16),
61
- (34, 16, 1, 1, 0),
62
- (16, 32),
63
- (32, 2, 1),
64
- (16, 2, 1),
65
- (16, 2, 1),
66
- ]
67
-
68
- if nn_architecture in hp_model_arch:
69
- model_capacity_data = [
70
- (2, 32),
71
- (2, 32),
72
- (34, 16, 1, 1, 0),
73
- (16, 32),
74
- (66, 32, 1, 1, 0),
75
- (32, 64),
76
- (64, 2, 1),
77
- (32, 2, 1),
78
- (32, 2, 1),
79
- ]
80
-
81
- if nn_architecture in hp2_model_arch:
82
- model_capacity_data = [
83
- (2, 64),
84
- (2, 64),
85
- (66, 32, 1, 1, 0),
86
- (32, 64),
87
- (130, 64, 1, 1, 0),
88
- (64, 128),
89
- (128, 2, 1),
90
- (64, 2, 1),
91
- (64, 2, 1),
92
- ]
93
-
94
- cascaded = CascadedASPPNet
95
- model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
96
-
97
- return model
98
-
99
- class CascadedASPPNet(nn.Module):
100
-
101
- def __init__(self, n_fft, model_capacity_data, nn_architecture):
102
- super(CascadedASPPNet, self).__init__()
103
- self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
104
- self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])
105
-
106
- self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
107
- self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])
108
-
109
- self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
110
- self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])
111
-
112
- self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
113
- self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
114
- self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)
115
-
116
- self.max_bin = n_fft // 2
117
- self.output_bin = n_fft // 2 + 1
118
-
119
- self.offset = 128
120
-
121
- def forward(self, x):
122
- mix = x.detach()
123
- x = x.clone()
124
-
125
- x = x[:, :, :self.max_bin]
126
-
127
- bandw = x.size()[2] // 2
128
- aux1 = torch.cat([
129
- self.stg1_low_band_net(x[:, :, :bandw]),
130
- self.stg1_high_band_net(x[:, :, bandw:])
131
- ], dim=2)
132
-
133
- h = torch.cat([x, aux1], dim=1)
134
- aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
135
-
136
- h = torch.cat([x, aux1, aux2], dim=1)
137
- h = self.stg3_full_band_net(self.stg3_bridge(h))
138
-
139
- mask = torch.sigmoid(self.out(h))
140
- mask = F.pad(
141
- input=mask,
142
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
143
- mode='replicate')
144
-
145
- if self.training:
146
- aux1 = torch.sigmoid(self.aux1_out(aux1))
147
- aux1 = F.pad(
148
- input=aux1,
149
- pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
150
- mode='replicate')
151
- aux2 = torch.sigmoid(self.aux2_out(aux2))
152
- aux2 = F.pad(
153
- input=aux2,
154
- pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
155
- mode='replicate')
156
- return mask * mix, aux1 * mix, aux2 * mix
157
- else:
158
- return mask# * mix
159
-
160
- def predict_mask(self, x):
161
- mask = self.forward(x)
162
-
163
- if self.offset > 0:
164
- mask = mask[:, :, :, self.offset:-self.offset]
165
-
166
- return mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/nets_new.py DELETED
@@ -1,125 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
- from . import layers_new as layers
5
-
6
- class BaseNet(nn.Module):
7
-
8
- def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
9
- super(BaseNet, self).__init__()
10
- self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
11
- self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
12
- self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
13
- self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
14
- self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
15
-
16
- self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
17
-
18
- self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
19
- self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
20
- self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
21
- self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
22
- self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
23
-
24
- def __call__(self, x):
25
- e1 = self.enc1(x)
26
- e2 = self.enc2(e1)
27
- e3 = self.enc3(e2)
28
- e4 = self.enc4(e3)
29
- e5 = self.enc5(e4)
30
-
31
- h = self.aspp(e5)
32
-
33
- h = self.dec4(h, e4)
34
- h = self.dec3(h, e3)
35
- h = self.dec2(h, e2)
36
- h = torch.cat([h, self.lstm_dec2(h)], dim=1)
37
- h = self.dec1(h, e1)
38
-
39
- return h
40
-
41
- class CascadedNet(nn.Module):
42
-
43
- def __init__(self, n_fft, nn_arch_size=51000, nout=32, nout_lstm=128):
44
- super(CascadedNet, self).__init__()
45
- self.max_bin = n_fft // 2
46
- self.output_bin = n_fft // 2 + 1
47
- self.nin_lstm = self.max_bin // 2
48
- self.offset = 64
49
- nout = 64 if nn_arch_size == 218409 else nout
50
-
51
- #print(nout, nout_lstm, n_fft)
52
-
53
- self.stg1_low_band_net = nn.Sequential(
54
- BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
55
- layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0)
56
- )
57
- self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
58
-
59
- self.stg2_low_band_net = nn.Sequential(
60
- BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
61
- layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0)
62
- )
63
- self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2)
64
-
65
- self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
66
-
67
- self.out = nn.Conv2d(nout, 2, 1, bias=False)
68
- self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
69
-
70
- def forward(self, x):
71
- x = x[:, :, :self.max_bin]
72
-
73
- bandw = x.size()[2] // 2
74
- l1_in = x[:, :, :bandw]
75
- h1_in = x[:, :, bandw:]
76
- l1 = self.stg1_low_band_net(l1_in)
77
- h1 = self.stg1_high_band_net(h1_in)
78
- aux1 = torch.cat([l1, h1], dim=2)
79
-
80
- l2_in = torch.cat([l1_in, l1], dim=1)
81
- h2_in = torch.cat([h1_in, h1], dim=1)
82
- l2 = self.stg2_low_band_net(l2_in)
83
- h2 = self.stg2_high_band_net(h2_in)
84
- aux2 = torch.cat([l2, h2], dim=2)
85
-
86
- f3_in = torch.cat([x, aux1, aux2], dim=1)
87
- f3 = self.stg3_full_band_net(f3_in)
88
-
89
- mask = torch.sigmoid(self.out(f3))
90
- mask = F.pad(
91
- input=mask,
92
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
93
- mode='replicate'
94
- )
95
-
96
- if self.training:
97
- aux = torch.cat([aux1, aux2], dim=1)
98
- aux = torch.sigmoid(self.aux_out(aux))
99
- aux = F.pad(
100
- input=aux,
101
- pad=(0, 0, 0, self.output_bin - aux.size()[2]),
102
- mode='replicate'
103
- )
104
- return mask, aux
105
- else:
106
- return mask
107
-
108
- def predict_mask(self, x):
109
- mask = self.forward(x)
110
-
111
- if self.offset > 0:
112
- mask = mask[:, :, :, self.offset:-self.offset]
113
- assert mask.size()[3] > 0
114
-
115
- return mask
116
-
117
- def predict(self, x):
118
- mask = self.forward(x)
119
- pred_mag = x * mask
120
-
121
- if self.offset > 0:
122
- pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
123
- assert pred_mag.size()[3] > 0
124
-
125
- return pred_mag