Spaces:
Runtime error
Runtime error
File size: 5,240 Bytes
5565d9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import torch
from torch import nn
import torch.nn.functional as F
from . import layers
class BaseASPPNet(nn.Module):
def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.nn_architecture = nn_architecture
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
if self.nn_architecture == 129605:
self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
else:
self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
if self.nn_architecture == 129605:
h, e5 = self.enc5(h)
h = self.aspp(h)
h = self.dec5(h, e5)
else:
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
def determine_model_capacity(n_fft_bins, nn_architecture):
sp_model_arch = [31191, 33966, 129605]
hp_model_arch = [123821, 123812]
hp2_model_arch = [537238, 537227]
if nn_architecture in sp_model_arch:
model_capacity_data = [
(2, 16),
(2, 16),
(18, 8, 1, 1, 0),
(8, 16),
(34, 16, 1, 1, 0),
(16, 32),
(32, 2, 1),
(16, 2, 1),
(16, 2, 1),
]
if nn_architecture in hp_model_arch:
model_capacity_data = [
(2, 32),
(2, 32),
(34, 16, 1, 1, 0),
(16, 32),
(66, 32, 1, 1, 0),
(32, 64),
(64, 2, 1),
(32, 2, 1),
(32, 2, 1),
]
if nn_architecture in hp2_model_arch:
model_capacity_data = [
(2, 64),
(2, 64),
(66, 32, 1, 1, 0),
(32, 64),
(130, 64, 1, 1, 0),
(64, 128),
(128, 2, 1),
(64, 2, 1),
(64, 2, 1),
]
cascaded = CascadedASPPNet
model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
return model
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft, model_capacity_data, nn_architecture):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])
self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])
self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])
self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
return mask# * mix
def predict_mask(self, x):
mask = self.forward(x)
if self.offset > 0:
mask = mask[:, :, :, self.offset:-self.offset]
return mask |