File size: 16,533 Bytes
dfc1efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import defaultdict
from contextlib import contextmanager
import math
import os
import tempfile
import typing as tp

import errno
import functools
import hashlib
import inspect
import io
import os
import random
import socket
import tempfile
import warnings
import zlib
import tkinter as tk

from diffq import UniformQuantizer, DiffQuantizer
import torch as th
import tqdm
from torch import distributed
from torch.nn import functional as F

import torch

def unfold(a, kernel_size, stride):
    """Given input of size [*OT, T], output Tensor of size [*OT, F, K]
    with K the kernel size, by extracting frames with the given stride.

    This will pad the input so that `F = ceil(T / K)`.

    see https://github.com/pytorch/pytorch/issues/60466
    """
    *shape, length = a.shape
    n_frames = math.ceil(length / stride)
    tgt_length = (n_frames - 1) * stride + kernel_size
    a = F.pad(a, (0, tgt_length - length))
    strides = list(a.stride())
    assert strides[-1] == 1, 'data should be contiguous'
    strides = strides[:-1] + [stride, 1]
    return a.as_strided([*shape, n_frames, kernel_size], strides)


def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]):
    """
    Center trim `tensor` with respect to `reference`, along the last dimension.
    `reference` can also be a number, representing the length to trim to.
    If the size difference != 0 mod 2, the extra sample is removed on the right side.
    """
    ref_size: int
    if isinstance(reference, torch.Tensor):
        ref_size = reference.size(-1)
    else:
        ref_size = reference
    delta = tensor.size(-1) - ref_size
    if delta < 0:
        raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.")
    if delta:
        tensor = tensor[..., delta // 2:-(delta - delta // 2)]
    return tensor


def pull_metric(history: tp.List[dict], name: str):
    out = []
    for metrics in history:
        metric = metrics
        for part in name.split("."):
            metric = metric[part]
        out.append(metric)
    return out


def EMA(beta: float = 1):
    """
    Exponential Moving Average callback.
    Returns a single function that can be called to repeatidly update the EMA
    with a dict of metrics. The callback will return
    the new averaged dict of metrics.

    Note that for `beta=1`, this is just plain averaging.
    """
    fix: tp.Dict[str, float] = defaultdict(float)
    total: tp.Dict[str, float] = defaultdict(float)

    def _update(metrics: dict, weight: float = 1) -> dict:
        nonlocal total, fix
        for key, value in metrics.items():
            total[key] = total[key] * beta + weight * float(value)
            fix[key] = fix[key] * beta + weight
        return {key: tot / fix[key] for key, tot in total.items()}
    return _update


def sizeof_fmt(num: float, suffix: str = 'B'):
    """
    Given `num` bytes, return human readable size.
    Taken from https://stackoverflow.com/a/1094933
    """
    for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
        if abs(num) < 1024.0:
            return "%3.1f%s%s" % (num, unit, suffix)
        num /= 1024.0
    return "%.1f%s%s" % (num, 'Yi', suffix)


@contextmanager
def temp_filenames(count: int, delete=True):
    names = []
    try:
        for _ in range(count):
            names.append(tempfile.NamedTemporaryFile(delete=False).name)
        yield names
    finally:
        if delete:
            for name in names:
                os.unlink(name)

def average_metric(metric, count=1.):
    """
    Average `metric` which should be a float across all hosts. `count` should be
    the weight for this particular host (i.e. number of examples).
    """
    metric = th.tensor([count, count * metric], dtype=th.float32, device='cuda')
    distributed.all_reduce(metric, op=distributed.ReduceOp.SUM)
    return metric[1].item() / metric[0].item()


def free_port(host='', low=20000, high=40000):
    """
    Return a port number that is most likely free.
    This could suffer from a race condition although
    it should be quite rare.
    """
    sock = socket.socket()
    while True:
        port = random.randint(low, high)
        try:
            sock.bind((host, port))
        except OSError as error:
            if error.errno == errno.EADDRINUSE:
                continue
            raise
        return port


def sizeof_fmt(num, suffix='B'):
    """
    Given `num` bytes, return human readable size.
    Taken from https://stackoverflow.com/a/1094933
    """
    for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
        if abs(num) < 1024.0:
            return "%3.1f%s%s" % (num, unit, suffix)
        num /= 1024.0
    return "%.1f%s%s" % (num, 'Yi', suffix)


def human_seconds(seconds, display='.2f'):
    """
    Given `seconds` seconds, return human readable duration.
    """
    value = seconds * 1e6
    ratios = [1e3, 1e3, 60, 60, 24]
    names = ['us', 'ms', 's', 'min', 'hrs', 'days']
    last = names.pop(0)
    for name, ratio in zip(names, ratios):
        if value / ratio < 0.3:
            break
        value /= ratio
        last = name
    return f"{format(value, display)} {last}"


class TensorChunk:
    def __init__(self, tensor, offset=0, length=None):
        total_length = tensor.shape[-1]
        assert offset >= 0
        assert offset < total_length

        if length is None:
            length = total_length - offset
        else:
            length = min(total_length - offset, length)

        self.tensor = tensor
        self.offset = offset
        self.length = length
        self.device = tensor.device

    @property
    def shape(self):
        shape = list(self.tensor.shape)
        shape[-1] = self.length
        return shape

    def padded(self, target_length):
        delta = target_length - self.length
        total_length = self.tensor.shape[-1]
        assert delta >= 0

        start = self.offset - delta // 2
        end = start + target_length

        correct_start = max(0, start)
        correct_end = min(total_length, end)

        pad_left = correct_start - start
        pad_right = end - correct_end

        out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
        assert out.shape[-1] == target_length
        return out


def tensor_chunk(tensor_or_chunk):
    if isinstance(tensor_or_chunk, TensorChunk):
        return tensor_or_chunk
    else:
        assert isinstance(tensor_or_chunk, th.Tensor)
        return TensorChunk(tensor_or_chunk)


def apply_model_v1(model, mix, shifts=None, split=False, progress=False, set_progress_bar=None):
    """
    Apply model to a given mixture.

    Args:
        shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
            and apply the oppositve shift to the output. This is repeated `shifts` time and
            all predictions are averaged. This effectively makes the model time equivariant
            and improves SDR by up to 0.2 points.
        split (bool): if True, the input will be broken down in 8 seconds extracts
            and predictions will be performed individually on each and concatenated.
            Useful for model with large memory footprint like Tasnet.
        progress (bool): if True, show a progress bar (requires split=True)
    """

    channels, length = mix.size()
    device = mix.device
    progress_value = 0
    
    if split:
        out = th.zeros(4, channels, length, device=device)
        shift = model.samplerate * 10
        offsets = range(0, length, shift)
        scale = 10
        if progress:
            offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds')
        for offset in offsets:
            chunk = mix[..., offset:offset + shift]
            if set_progress_bar:
                progress_value += 1
                set_progress_bar(0.1, (0.8/len(offsets)*progress_value))
                chunk_out = apply_model_v1(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar)
            else:
                chunk_out = apply_model_v1(model, chunk, shifts=shifts)
            out[..., offset:offset + shift] = chunk_out
            offset += shift
        return out
    elif shifts:
        max_shift = int(model.samplerate / 2)
        mix = F.pad(mix, (max_shift, max_shift))
        offsets = list(range(max_shift))
        random.shuffle(offsets)
        out = 0
        for offset in offsets[:shifts]:
            shifted = mix[..., offset:offset + length + max_shift]
            if set_progress_bar:
                shifted_out = apply_model_v1(model, shifted, set_progress_bar=set_progress_bar)
            else:
                shifted_out = apply_model_v1(model, shifted)
            out += shifted_out[..., max_shift - offset:max_shift - offset + length]
        out /= shifts
        return out
    else:
        valid_length = model.valid_length(length)
        delta = valid_length - length
        padded = F.pad(mix, (delta // 2, delta - delta // 2))
        with th.no_grad():
            out = model(padded.unsqueeze(0))[0]
        return center_trim(out, mix)

def apply_model_v2(model, mix, shifts=None, split=False,
                overlap=0.25, transition_power=1., progress=False, set_progress_bar=None): 
    """
    Apply model to a given mixture.

    Args:
        shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
            and apply the oppositve shift to the output. This is repeated `shifts` time and
            all predictions are averaged. This effectively makes the model time equivariant
            and improves SDR by up to 0.2 points.
        split (bool): if True, the input will be broken down in 8 seconds extracts
            and predictions will be performed individually on each and concatenated.
            Useful for model with large memory footprint like Tasnet.
        progress (bool): if True, show a progress bar (requires split=True)
    """
    
    assert transition_power >= 1, "transition_power < 1 leads to weird behavior."
    device = mix.device
    channels, length = mix.shape
    progress_value = 0
    
    if split:
        out = th.zeros(len(model.sources), channels, length, device=device)
        sum_weight = th.zeros(length, device=device)
        segment = model.segment_length
        stride = int((1 - overlap) * segment)
        offsets = range(0, length, stride)
        scale = stride / model.samplerate
        if progress:
            offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds')
        # We start from a triangle shaped weight, with maximal weight in the middle
        # of the segment. Then we normalize and take to the power `transition_power`.
        # Large values of transition power will lead to sharper transitions.
        weight = th.cat([th.arange(1, segment // 2 + 1),
                         th.arange(segment - segment // 2, 0, -1)]).to(device)
        assert len(weight) == segment
        # If the overlap < 50%, this will translate to linear transition when
        # transition_power is 1.
        weight = (weight / weight.max())**transition_power
        for offset in offsets:
            chunk = TensorChunk(mix, offset, segment)
            if set_progress_bar:
                progress_value += 1
                set_progress_bar(0.1, (0.8/len(offsets)*progress_value))
                chunk_out = apply_model_v2(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar)
            else:
                chunk_out = apply_model_v2(model, chunk, shifts=shifts)
            chunk_length = chunk_out.shape[-1]
            out[..., offset:offset + segment] += weight[:chunk_length] * chunk_out
            sum_weight[offset:offset + segment] += weight[:chunk_length]
            offset += segment
        assert sum_weight.min() > 0
        out /= sum_weight
        return out
    elif shifts:
        max_shift = int(0.5 * model.samplerate)
        mix = tensor_chunk(mix)
        padded_mix = mix.padded(length + 2 * max_shift)
        out = 0
        for _ in range(shifts):
            offset = random.randint(0, max_shift)
            shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
            
            if set_progress_bar:
                progress_value += 1
                shifted_out = apply_model_v2(model, shifted, set_progress_bar=set_progress_bar)
            else:
                shifted_out = apply_model_v2(model, shifted)
            out += shifted_out[..., max_shift - offset:]
        out /= shifts
        return out
    else:
        valid_length = model.valid_length(length)
        mix = tensor_chunk(mix)
        padded_mix = mix.padded(valid_length)
        with th.no_grad():
            out = model(padded_mix.unsqueeze(0))[0]
        return center_trim(out, length)


@contextmanager
def temp_filenames(count, delete=True):
    names = []
    try:
        for _ in range(count):
            names.append(tempfile.NamedTemporaryFile(delete=False).name)
        yield names
    finally:
        if delete:
            for name in names:
                os.unlink(name)


def get_quantizer(model, args, optimizer=None):
    quantizer = None
    if args.diffq:
        quantizer = DiffQuantizer(
            model, min_size=args.q_min_size, group_size=8)
        if optimizer is not None:
            quantizer.setup_optimizer(optimizer)
    elif args.qat:
        quantizer = UniformQuantizer(
                model, bits=args.qat, min_size=args.q_min_size)
    return quantizer


def load_model(path, strict=False):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        load_from = path
        package = th.load(load_from, 'cpu')

    klass = package["klass"]
    args = package["args"]
    kwargs = package["kwargs"]

    if strict:
        model = klass(*args, **kwargs)
    else:
        sig = inspect.signature(klass)
        for key in list(kwargs):
            if key not in sig.parameters:
                warnings.warn("Dropping inexistant parameter " + key)
                del kwargs[key]
        model = klass(*args, **kwargs)

    state = package["state"]
    training_args = package["training_args"]
    quantizer = get_quantizer(model, training_args)

    set_state(model, quantizer, state)
    return model


def get_state(model, quantizer):
    if quantizer is None:
        state = {k: p.data.to('cpu') for k, p in model.state_dict().items()}
    else:
        state = quantizer.get_quantized_state()
        buf = io.BytesIO()
        th.save(state, buf)
        state = {'compressed': zlib.compress(buf.getvalue())}
    return state


def set_state(model, quantizer, state):
    if quantizer is None:
        model.load_state_dict(state)
    else:
        buf = io.BytesIO(zlib.decompress(state["compressed"]))
        state = th.load(buf, "cpu")
        quantizer.restore_quantized_state(state)

    return state


def save_state(state, path):
    buf = io.BytesIO()
    th.save(state, buf)
    sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]

    path = path.parent / (path.stem + "-" + sig + path.suffix)
    path.write_bytes(buf.getvalue())


def save_model(model, quantizer, training_args, path):
    args, kwargs = model._init_args_kwargs
    klass = model.__class__

    state = get_state(model, quantizer)

    save_to = path
    package = {
        'klass': klass,
        'args': args,
        'kwargs': kwargs,
        'state': state,
        'training_args': training_args,
    }
    th.save(package, save_to)


def capture_init(init):
    @functools.wraps(init)
    def __init__(self, *args, **kwargs):
        self._init_args_kwargs = (args, kwargs)
        init(self, *args, **kwargs)

    return __init__

class DummyPoolExecutor:
    class DummyResult:
        def __init__(self, func, *args, **kwargs):
            self.func = func
            self.args = args
            self.kwargs = kwargs

        def result(self):
            return self.func(*self.args, **self.kwargs)

    def __init__(self, workers=0):
        pass

    def submit(self, func, *args, **kwargs):
        return DummyPoolExecutor.DummyResult(func, *args, **kwargs)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        return