Spaces:
Sleeping
Sleeping
Commit
·
b31acbe
1
Parent(s):
61d4547
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
|
6 |
+
|
7 |
+
dtype = torch.float
|
8 |
+
device = torch.device("cpu")
|
9 |
+
# device = torch.device("cuda:0") # Uncomment this to run on GPU
|
10 |
+
|
11 |
+
# Create random input and output data
|
12 |
+
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
|
13 |
+
y = torch.sin(x)
|
14 |
+
|
15 |
+
# Randomly initialize weights
|
16 |
+
a = torch.randn((), device=device, dtype=dtype)
|
17 |
+
b = torch.randn((), device=device, dtype=dtype)
|
18 |
+
c = torch.randn((), device=device, dtype=dtype)
|
19 |
+
d = torch.randn((), device=device, dtype=dtype)
|
20 |
+
|
21 |
+
learning_rate = 1e-6
|
22 |
+
for t in range(2000):
|
23 |
+
# Forward pass: compute predicted y
|
24 |
+
y_pred = a + b * x + c * x ** 2 + d * x ** 3
|
25 |
+
|
26 |
+
# Compute and print loss
|
27 |
+
loss = (y_pred - y).pow(2).sum().item()
|
28 |
+
if t % 100 == 99:
|
29 |
+
print(t, loss)
|
30 |
+
|
31 |
+
# Backprop to compute gradients of a, b, c, d with respect to loss
|
32 |
+
grad_y_pred = 2.0 * (y_pred - y)
|
33 |
+
grad_a = grad_y_pred.sum()
|
34 |
+
grad_b = (grad_y_pred * x).sum()
|
35 |
+
grad_c = (grad_y_pred * x ** 2).sum()
|
36 |
+
grad_d = (grad_y_pred * x ** 3).sum()
|
37 |
+
|
38 |
+
# Update weights using gradient descent
|
39 |
+
a -= learning_rate * grad_a
|
40 |
+
b -= learning_rate * grad_b
|
41 |
+
c -= learning_rate * grad_c
|
42 |
+
d -= learning_rate * grad_d
|
43 |
+
|
44 |
+
|
45 |
+
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
|