Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,18 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
|
| 3 |
import torch
|
| 4 |
-
import math
|
|
|
|
| 5 |
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
dtype = torch.float
|
| 8 |
device = torch.device("cpu")
|
| 9 |
# device = torch.device("cuda:0") # Uncomment this to run on GPU
|
|
@@ -17,7 +26,7 @@ a = torch.randn((), device=device, dtype=dtype)
|
|
| 17 |
b = torch.randn((), device=device, dtype=dtype)
|
| 18 |
c = torch.randn((), device=device, dtype=dtype)
|
| 19 |
d = torch.randn((), device=device, dtype=dtype)
|
| 20 |
-
print(a
|
| 21 |
learning_rate = 1e-6
|
| 22 |
for t in range(2000):
|
| 23 |
# Forward pass: compute predicted y
|
|
@@ -26,7 +35,7 @@ for t in range(2000):
|
|
| 26 |
# Compute and print loss
|
| 27 |
loss = (y_pred - y).pow(2).sum().item()
|
| 28 |
if t % 100 == 99:
|
| 29 |
-
print(t
|
| 30 |
|
| 31 |
# Backprop to compute gradients of a, b, c, d with respect to loss
|
| 32 |
grad_y_pred = 2.0 * (y_pred - y)
|
|
@@ -42,4 +51,10 @@ for t in range(2000):
|
|
| 42 |
d -= learning_rate * grad_d
|
| 43 |
|
| 44 |
|
| 45 |
-
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
|
| 3 |
import torch
|
| 4 |
+
import math, sys
|
| 5 |
+
from flask import *
|
| 6 |
|
| 7 |
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
app.config['data'] = ""
|
| 10 |
+
|
| 11 |
+
def print(data):
|
| 12 |
+
app.config['data'] += data + "<br>"
|
| 13 |
+
sys.stdout.write(data + "\n")
|
| 14 |
+
sys.stdout.flush()
|
| 15 |
+
|
| 16 |
dtype = torch.float
|
| 17 |
device = torch.device("cpu")
|
| 18 |
# device = torch.device("cuda:0") # Uncomment this to run on GPU
|
|
|
|
| 26 |
b = torch.randn((), device=device, dtype=dtype)
|
| 27 |
c = torch.randn((), device=device, dtype=dtype)
|
| 28 |
d = torch.randn((), device=device, dtype=dtype)
|
| 29 |
+
print(f"{a} {b} {c} {d}")
|
| 30 |
learning_rate = 1e-6
|
| 31 |
for t in range(2000):
|
| 32 |
# Forward pass: compute predicted y
|
|
|
|
| 35 |
# Compute and print loss
|
| 36 |
loss = (y_pred - y).pow(2).sum().item()
|
| 37 |
if t % 100 == 99:
|
| 38 |
+
print(str(t) + " " + str(loss))
|
| 39 |
|
| 40 |
# Backprop to compute gradients of a, b, c, d with respect to loss
|
| 41 |
grad_y_pred = 2.0 * (y_pred - y)
|
|
|
|
| 51 |
d -= learning_rate * grad_d
|
| 52 |
|
| 53 |
|
| 54 |
+
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
|
| 55 |
+
|
| 56 |
+
@app.route('/')
|
| 57 |
+
def index():
|
| 58 |
+
return app.config["data"]
|
| 59 |
+
|
| 60 |
+
app.run(host= "0.0.0.0", port=7860)
|